Shop Forum More Submit  Join Login
Just over a year ago, your group admins—myself and Agahnim—reached a major milestone in our long-term goal of evolution education and outreach, which served the basis for starting this group over 11 years ago. We published our first book! Published by Inkwater Press and titled God’s Word or Human Reason?, the book has been available on Amazon since January of last year.

I am now offering direct purchases of signed, inscribed hardcovers that are personalized with a drawing of a bird or dinosaur of your choice. They are $40 (U.S. and Canada) or $50 (everywhere else), shipping included. Thanks to my excellent web developer friend, you can do this easily through this form on my website, with PayPal or a credit card:

>>>Buy my book with a personalized signing and dinosaur drawing!<<<

We wrote the book with the original intention of educating creationists and fence-sitters with nuance, reason and kindness, but we guarantee that just about anyone who accepts evolution has something to learn from it too. For those of you who don’t already know about the book, here’s the Amazon description and inside flap teaser:

God gave humans the ability to reason, but the Bible commands that we have faith in Him. According to Answers in Genesis, the largest and most influential creationist organization in the United States, the conclusions of human reason must be rejected if they contradict our understanding of the Bible. What are the implications of this worldview, and is it the best one for a Christian to live by?

The book is the result of almost a decade of effort by its unusual collection of authors, each of whom has written a chapter (or two) in their area of expertise or interest.

Jonathan Kane, the originator of the book’s concept and purpose, has written the opening chapter on the nature and purpose of science as well as the centerpiece chapter on bird and dinosaur evolution;
Emily Willoughby has written the chapter on radiometric dating and contributed the book’s centerpiece illustrations of feathered dinosaurs (all of which were produced specially for the book and which include 3 exclusive paintings not posted on any of my online galleries);
T. Michael Keesey has written a chapter extensively detailing the emergence of the human primate from our diverse panoply of primate ancestors;
Glenn Morton, a professional geologist, has written a chapter on the pitfalls of “Flood geology” and what the fossil record tells us;
and James Comer, who has written the concluding chapter on how it’s possible to intrepret the Bible in a way that’s consistent with an acceptance of evolutionary theory.

One of the most unique things about our book is that all five of its authors were once creationists. We each eventually came to reject creationist ideology at different points in our lives, and from different catalysts, as we became exposed to the science of evolution, paleontology, and geology. Today, the five of us are represented by two atheists, one deist, and two evolution-accepting Christians, and each of us has written a short narrative following our chapters on the unique experiences and circumstances that led to our rejection of creationism and, in some cases, of Christianity.

We're delighted that the book has been well-received so far, and has recently been reviewed by the excellent Darren Naish of Tetrapod Zoology, and mentioned by evolutionary biologist Jerry Coyne. If you were ever a creationist or know someone who is, are interested in learning about creationist arguments and their strongest rebuttals in much more detail than any other book on the market, or would simply like the opportunity to support us and our creative endeavors (and get a commissioned sketch from me!), now's your chance to snag an exclusive copy. Thanks for reading, and for being part of the mission of Domain of Darwin!
After 11 years of activity, our Paleoart folder is now full to capacity. I have closed this folder to submission attempts and have created a new folder for paleoart, Paleoart II, so please direct all artworks of prehistoric life to this folder and this folder only. Any paleoart submissions to the General Art folder will be declined without comment.

I have added a notice of this change to the rules on the main page, as well as to the description of the full folder (now renamed Paleoart I) to minimize possible misunderstandings.

Thank you to all of our members for continuing to make this group the biggest evolution-themed community on DeviantArt, 11 years and counting!
Hi loyal Domain of Darwin followers,

Over the past couple of weeks I have been shamefully neglectful of the group, and stupidly allowed a handful of submissions to expire. Unfortunately, it seems as though most of their notifications have disappeared from my inbox, so I cannot solicit them individually. Therefore, if you submitted something to the group in the past several weeks and it did not get accepted, please resubmit at your earliest convenience! Very sorry once again.
For centuries, dinosaurs have captured the public’s imagination through their massive proportions and power, and their ancestral connection to birds has more recently brought a new fascination to paleontology. But when a newly discovered dinosaur is both huge and covered in feathers, it becomes the stuff of legend—a true dragon shaped by evolution instead of mythos.

Meet Dakotaraptor steini, one of the largest “raptor” dinosaurs known to science. This 17-foot-long predator was described by Robert DePalma, curator of vertebrate paleontology at the Palm Beach Museum of Natural History, and colleagues in last month’s Paleontological Contributions. Hailing from the Hell Creek Formation’s 66-million-year-old boneyards, Dakotaraptor would have shared its sub-tropical, floodplain environment with Triceratops, Edmontosaurus, and Tyrannosaurus rex, so it was by no means the largest animal stomping around late Cretaceous North America. But among its fellow dromaeosaurs—the family of bipedal, carnivorous dinosaurs typified by an enlarged “killing claw” on each foot and a close affinity to birds—its only competitor was the much older Utahraptor, which predated the Hell Creek ecosystem by about 60 million years.

The Thing with Feathers

As yet, there is no direct fossil evidence that Utahraptor, Deinonychus, and a number of other dromaeosaurs were feathered, because many of them come from depositional sediment where the preservation of delicate feathers is not possible. We can infer that they were certainly feathered based on fossils of their German and Chinese cousins, who had the good fortune (to us, anyway) to fossilize in fine-grain limestone and volcanic ash. These have given us a breathtaking detail of feather preservation in dinosaurs like Archaeopteryx, from Germany’s Solnhofen quarries, and Microraptor, from the famous Liaoning formations of northern China.

These animals (and many like them) don’t merely have feathers, they have a specific sort of feather seen today in flying birds: long, vaned, barbed feathers with strong central quills. Since these feathers are directly known from both early ancestors and late descendants of these dinosaurs, it is reasonable to assume that the whole tribe possessed them—the trait is ancestral to the entire group. This method of inference is known as phylogenetic bracketing, and it is based on the same logic we use to determine that prehistoric mammals, known only from bones, were likely covered in hair.

Bracketing is a robust method of inference when we have a lot of data points, and for dromaeosaurs we do. But most of these data points come from smaller, more obviously birdlike members of the family, and there’s always been an undercurrent of doubt as to whether the larger members of the family would have them, too. What would a dinosaur so large, the skeptics ask, need long, quilled feathers for? Why does something far too big to fly need the sort of feather ostensibly used for flying? Dakotaraptor hasn’t answered all of these questions for us, but it has given us one of the most important data points yet.

Like its much smaller Mongolian cousin Velociraptor, Dakotaraptor has huge, obvious quill knobs on its arms. Knobs like these are clear signs of ligament attachment points for big, strong feathers with robust quills. But while the turkey-sized Velociraptor could have derived some aerodynamic advantage from its wings, Dakotaraptor was bigger than a grizzly bear. No one knows for sure what it was doing with wings, but one thing is certain—it wasn’t flying.

The Dakotaraptor, its Form and Function

Dakotaraptor might have been around the same size as its Utahraptor great-uncle, but its body plan was very different. Where Utah was stout, low-slung and muscular, Dakota was tall and lithe, something like a scaled-up Deinonychus. The proportions of its legs and feet would have enabled it to run faster than its stouter relatives. Like all dromaeosaurs, it possessed two enlarged claws—one on the second toe of each foot, and held off the ground—and these were massive and powerful, with larger muscle-attachment points than in related species. Its hands are tipped with huge claws and its arms long and flexible. Every element of its anatomy suggests an active, carnivorous lifestyle.

The large feathers on the arms of this giant dromaeosaur may offer further clues to its predatory behavior. Many different uses for arm-feathers in non-flying dinosaurs have been proposed, including the shielding of eggs during brooding, signaling for courtship, and aggressive territorial display. However, none of these functions require the amount of stress that large quill knobs imply. In living raptors—that is, hawks, falcons and eagles—prey is often struck with the feet, which show a curious similarity to those of dromaeosaurs. Birds of prey have massively enlarged talons on the second toe, as well as short ankles that provide the torque for squeezing the life out of their prey. The bird will hang on while standing atop its meal, wings outstretched for balance and protection as its weight bears down on those huge second-digit talons. So similar are the feet and legs of dromaeosaurs that paleontologist Denver Fowler has proposed a similar method for dispatching prey. This model, known as “raptor prey restraint”, is a likely explanation for the wings of Dakotaraptor: the sturdy quills would provide a balancing surface, and the strong arms a primitive flight stroke.

In its late Cretaceous ecosystem, Dakotaraptor’s size would have pitted it against a wide swath of competition from other predators. T. rex was considerably larger, with adults up to 40 feet in length, but tyrannosaurs are known to have complex growth stages and Dakotaraptor was almost certainly striving to dominate the same ecological niche as Tyrannosaurus juveniles. This would have set the giant raptor apart from Acheroraptor, the only other dromaeosaur known from the Hell Creek Formation. Acheroraptor was a coyote-sized little predator comparable to Velociraptor, and its much smaller prey would have made it largely ignorable to something the size of Dakotaraptor.

Dakotaraptor is known from several individuals that provided a collation of vertebrae, parts of the legs and feet, a complete arm and hand, and a number of scattered teeth. Some of the individuals these bones belonged to differed in size despite appearing fully mature, and this has led some researchers to speculate that Acheroraptor may actually be a smaller size morph of the same genus. Acheroraptor, however, is known only from a few pieces of the jaws, so the only overlap between material in the two dromaeosaurs is the teeth. While this makes direct comparison difficult, the teeth, at least, differ substantially: those belonging to Acheroraptor have strong and numerous serrations that the larger raptor lacks. Lead author DePalma is confident that the two are distinct, and has stated that “future fossil discoveries will no doubt reinforce the differences between the two taxa”.

That notwithstanding, there is much yet to be learned about this enormous dromaeosaur and its haunts and habits. As of yet we have no skull material and little from which to draw inference about social behavior, family structure or life history. The use of its feathers, while offering some tantalizing possibilities, is still much a mystery. But such is the joy of paleontology—each new discovery answers some questions and opens many more, ripe for exploration by those who dare.

This article was originally published at and has been republished here with permission.
If you have submitted something in the past 3 weeks and it's expired, please resubmit! I have been extremely busy and intended to set gallery submissions to 3 week expiries instead of 1 week, but stupidly forgot to set for all subfolders. Sorry for any inconvenience!

Recent Journal Entries