Shop Forum More Submit  Join Login
Trees Revisited by DinkydauSet Trees Revisited by DinkydauSet
Mandel Machine, Mandelbrot set

This image contains a collection of trees, ordered in what appears to be a natural (and beatiful) way. It reminds me of the shape of a 3rd power Mandelbrot Set. The center is like the main double cardoid and it also has (approximately) infinitely many bulbs. It's pretty much the exact same shape which leads me to think that the julia transformations I did to get here is also how the 3rd power Mandelbrot set comes about. It also makes me wonder if it's possible to build the shapes of higher power Mandelbrot sets using julia transformations. The 4th power Mandelbrot set is not 2-fold rotationally symmetric so it's not possible to build it (maybe it can be built in the 3rd power M-set?). The 4th power M-set might be possible...

I have often used the evolution zoom method to make julia morphings with 2 or more different types of shapes inside, though what I really wanted at first was 1 type of shape. I hid the fact that I didn't know how by choosing the same type 2 times. Now I found a way to get rid of the unnecessary copies, but the overall shape is very different this way.

Magnification:
2^9706.3
7.7169718014717701081201473595858 E2921

Re = -1.7688011252221877204709741758179943289719776561698906746323500348383699513591489612873967509274966440413557617241491600329058372805735550148585182138711720726695297443148253463184817954013513962337939472169657134580286294121622150299478675204801828772493631773673987904309055816283198587234189197841056049571802980640265156000065177874740485973621705174732650630769247931314556164494074766611938824067322405243506104378777342718615187425356491320861592233700947335816911589141624787016843941868708374406140859169960100095681558780027696824171951543816248932169324543091691569091287791899396819510536609202651352744135987374400083879072341472022542290361286853009509839846452730453481513265387679576679704654354482489532053723293459079676004717895713664899711957495757332765588472539464918031164836902929586122654796297094770427794366571322707809112332370950804360132673436651821911772042879533877478458718004410635110925632999566574084574235463912943470981721752643771773959558831554589854485604975364621185552698316665558691598027940316801636979000040560621127029663794019613541851673307251878131613238361091458431747078574040791783358730895007793682917277921800488141026306756804472855015620008630819680964376619758271645715301315352030916979509384752961939243018082424561263094775528318739161642895706042971428881780441631696627603372495412977727051511388497154183802329850302603882147199574795085484970649887998929691672019785648299562237807546571551108703613853476476635584556652568811579895157292213613741850776600290618732784205366679406209183839569625343815117957194201655856830438148745539385078552910235978236390095560441089361220724853517548990588385468840182561589121573689707841713231982289676578964566304537759382926839898672600236484643838432273575504175283877683434831283034936477963766914535828475223078368899757971868123519742649163544483797060207905762748263974741206676035342373418596222922297434957597148263365121018319605659231307996294004235202904458380630516068251886040368370758115208145816426943812593846118972673514534516052904742220875050306351568860227521804267873501871666887627451041383334734935761084602750325040614769804761840568041357299680337154522923062905316277109469749988131259315903712995926636115412457507400577726150468154511468443846674422928256891145186072654597069023685731909339210627069566886224118764897114006992931666743587971029936529081795869187074154311186008321350528072353048323119928080244615001852683452018915138610896758225470364123751023258566092514006871941278112232662554373559171314229397877800428215421102331977257179431815411793258149216937585480088953227258261067271164276065880412885595898519409991063276663586816144203494914936288482747501535541621005846894158892662624469998310599333626021627844856527863309756858610732042800629249468455546995415833057344470988207268766674228544321987366798992201893460402434350436358123395575256774446824903498517085456941735650

Im = 0.0023878480881805962820493232458554875037388092952829542156222752945764166987851812825932831879136756035194454484562929129723749322427988417441140327575831621191333413445566201483453075727278255196911626265388377437378928553941592342752390149210875595092895828341550441216137232078130843706694514812411896466242747598047237841899227407137207996153631661165310676900278121081109773454730706218028487944757761815189100251241603686120944865189418544771857366780301296072952615170045095076990744788601062500725092197419557540878567542349119974872148895674529910361655153195175960926770555469301301644923525565259716471074402246266656292684512998421471369841245969419718109233723597846540485542777563021083995697611612300274768455277194690961563407811185353390550470749277084198271845472675080540680170598292583097345103989777045408378143967319947909282864165283151152839968641455189430997723981196299993593987572466737384717840587289933588707393432757726734145910903896328723978531513514818704044611071990775303126673802839955813108666929364596523501121842680741526691737338933843486436192243112643661559745631040930829858257086064458039521611542008653748816940818206207801995237906691860097067120322932112566157731633594592235122962402399303991990210641677394799740426353614590140043776160707267731601373537975599905293399363474940388882572852053965492001959280706180255738237245127327321458755584892753479301937772087551712369041261813263065763604200797565327779240767708248581170092652292506127018525202830263388240593001343477542962460321943107998174534879536290722653460016994101289360707367764170864339880483298771875602916087103654747021702626710543570965779670061788813662643393054075906197477431314232350408058042444336898537707639499259746724526716689862903092860371521093305826388382514627257961717670586447669706353227908699821704206249993663026132845466290889074256678794497679729004222488549040762005041804135438300445236268180071097035346868429301772840208183351656109468691582900448799641336130006700050798475724210207542415707634564703190071036272867374271564705033881962125025327642255479054567095087898614790426657803039774715608219744663580852307172337863461461834873527416092515835896614707350930635299568427145577276278022801039971177502546312139872058890952120043526040902563046387962512879897692678849575962053093732046987800363511115465138658476718912646306300966817227976958372341341033832688719927824607797592973257546782077781443370408783271172848875987410446352252668907268099455600238014668283296120502908065655257368576768542147837197473079816454901442718050330214070753960956199047391284973073528869336377525870293835186654326572883021390296220440232615891627131048813022135789763124753663887361437564467802011993179524788277980585521125569771547775923387161097600941727093963430649526526356251808119775432738991172835499142733538819006271799133002338357073537763377568409858091085076509585387354490650
Add a Comment:
 
:iconbryceguy72:
bryceguy72 Featured By Owner Jan 11, 2018  Hobbyist Digital Artist
Stunning.  Both coordinates end with "650"... this is just a coincidence, right?
Reply
:icondinkydauset:
DinkydauSet Featured By Owner Jan 13, 2018  Hobbyist Digital Artist
Yes, it is.
Reply
:iconadapterr:
ADAPTERR Featured By Owner Oct 5, 2017
very cool image this is very good!:happybounce: Clap 
Reply
:icondinkydauset:
DinkydauSet Featured By Owner Oct 6, 2017  Hobbyist Digital Artist
thanks!
Reply
:iconkaleidogal:
Kaleidogal Featured By Owner Jun 5, 2017
So intense, a feast for the eyes!  Fantastic work.
Reply
:icondinkydauset:
DinkydauSet Featured By Owner Jun 5, 2017  Hobbyist Digital Artist
Thank you!
Reply
:iconquaz0r:
quaz0r Featured By Owner Jan 13, 2017  Hobbyist Digital Artist
whoa cool stuff dinky!
Reply
:icondinkydauset:
DinkydauSet Featured By Owner Jan 13, 2017  Hobbyist Digital Artist
Thank you
Reply
:iconfractalmonster:
FractalMonster Featured By Owner Jan 13, 2017
:omg:
This is VERY interesting :wow: There seems to be an infinity more  to discover in the field of raw fractals. You ought to expose this to mathematical institutions on universities. Whish you a really good luck with you further explorations :thumbsup::
Reply
:icondinkydauset:
DinkydauSet Featured By Owner Jan 13, 2017  Hobbyist Digital Artist
Thanks
I'm sure there's a lot to find, especially at even greater depths.
Reply
:iconfractalmonster:
FractalMonster Featured By Owner Jan 13, 2017
No problem :aww: For sure there are, an this was a real surprise :wow: Maybe there are strange being also (at yet greater depths :D
Reply
:iconwaste-and-tragedy:
waste-and-tragedy Featured By Owner Jan 12, 2017
Intense. :love:
Reply
:icondinkydauset:
DinkydauSet Featured By Owner Jan 12, 2017  Hobbyist Digital Artist
Thanks
Reply
Add a Comment:
 
×
  • Art Print
  • Canvas
  • Photo
Download PNG 8192 × 4096




Details

Submitted on
January 12, 2017
Image Size
56.0 MB
Resolution
8192×4096
Link
Thumb

Stats

Views
512
Favourites
15 (who?)
Comments
13
Downloads
9

License

Creative Commons License
Some rights reserved. This work is licensed under a
Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 License.