Mandel machine, Mandelbrot set
This is almost the same as my render called "Hyperbolic tiling". The difference is the center, which is the same tiling as in my render "Golden ratio tiling" except with lower rotational symmetry. Because of that it looks like the center is fractal just like the boundary of the circle, which really isn't a perfect circle and doesn't have infinite details at the boundary. I'm using the word pistil because it makes sense if you think of the whole shape as a flower and it's a commonly used word to describe the visual effects of fireworks.
Magnification:
2^7617.253
1.0510843298882798169523444081002 E2293
Coordinates:
Re = -1.756926777409492279550453516495033723680351314953727395189360515872146184591843562929235041931276915749278160980520618316430599415871996902596926862598035021255584780359396262195103803279188180322259185975758433064602552132685902087782172582697356951487949384199914512284706456295101378315964083825951399277140166495225573492107519435864376928215101754797308748653099155323500425030804100232823290513357194826032478988024335399553555059523787680797530674239314542520178491082473457728798567782349400912318919243828036374285195579243365772953344885235211753051813457718762395138437180050476967171845639690380658583455353083372775534301195826882333517791763473042135274373592718740018000720183062155195704010973390018010673224099324954835111442266188572316441266040459894934299292069836156852792071813200315054722275250691369880979164998090156561507211115478560688908833456753083822843148546307997091412351630135266660153355692629790064078594879383553672775254706264575937460626838569316088468346974733288361544703649698892850843264649814432705159118966243022567284812703810848844715562856162872856520748213634668861581220325870130603886541537650167217042594516038294334387532303457126404316313231550159909581928441008444958658163637661427913872790716507069731769476848474532298736078261491870844810175383872968567515405365946853881866258288217465275011445309194142950789077998977155694501788868625437827427058005812285388885094168405490589481347140892938973795414545891192610918702819509288350019554894495109091690601423964563105377795745829416332242946985762854712800875229359930903353678210397199994557129511608527215596563504440059650707931148867595481683175219052517369828635831463350676295529660777552794734747388782416425265797098883351061027873525330878674582586487058722043335216597379207002461392277772135758559138843234735929958011467771339756368252200224721587125678488695000487760210982272791728035380801563106665158542750428095039799852806322307303691040766224701292140810580204873023374141703566727495818637103031067711018980246410337736158423371852799649959608489013031423646533202632132991685263289151606681391765583633015189413030464362102303334776599497692335602467538739829390772546834450089401037983416729433916899797741030597623778859450988282809399816528282606217891413870405689
Im = 0.012173908090694117400914028111513437604936625482559659771763603873726107072844590000997222527757260109756238544155095317797354921317153228278646602801899836587359600289016682881969739277575609714449846813696853644277143319225719429734905270796374493631327669643407072832477468553858376876047739549059229204230481890995557454928684116818917908841711930809580148937066867557111019180086617834548977887978389230381994008668952189668076941721155656996853587216549985995146283732270308751394922172099452199294287481776600044862892903707625198583283045151631194396232197999805341440958336510492532791038413636669883706182125475054166319674055903401741567574488169059580037390487211937803611869296397513500367927805634469554154412834663725327959008746404508513996616156743355950106512520914312833980042683411185552292784614388033778872572960139973609853056471012707033829242709152402625408821433086231142255764158455702438284437074860856783948455963538777522738857962954275857605155396741905233595020553286664206996530778976355979938990623304541342875511668340336480606778729158581307764117919712359437172005191933084972399818079793875895747100127857412883243284984000970923858236586020368547296399751434719523317381673131029720890008803599576712279820283079684565687478723527119635759459893274395771355861896747286089960482285411384534991770012119698121174685619532603872711050429867674302097639255794018856402030489206314460304543380553672942947888902882359013096419659488996467077706443046948914298130751558465357797741262545661763075993840567561257396794363966978180169096137311826997567251359682830180332531002061629252001016876335439802268702701679777960015588505049554025306761359276474635256361954287033278240368140980538759139037882235639992358553367969017271540231065027325924915601532942711358713411689737846489809455241130223704148051134163970331548495429008934080625162350233055884855384363589465332810710174309863551304549950748543243947257125762482823942426659182489962761911109890390595838762353265197808152843851994781858437089094822848010596187659549358809691904200907172852285191190012893139287211979315795750430519504253272548520557862971714886649860404808484118785506432557260557624504408997689981016118848811000044606108032201518582330762732325041101472836700449365248807564176832490
This is almost the same as my render called "Hyperbolic tiling". The difference is the center, which is the same tiling as in my render "Golden ratio tiling" except with lower rotational symmetry. Because of that it looks like the center is fractal just like the boundary of the circle, which really isn't a perfect circle and doesn't have infinite details at the boundary. I'm using the word pistil because it makes sense if you think of the whole shape as a flower and it's a commonly used word to describe the visual effects of fireworks.
Magnification:
2^7617.253
1.0510843298882798169523444081002 E2293
Coordinates:
Re = -1.756926777409492279550453516495033723680351314953727395189360515872146184591843562929235041931276915749278160980520618316430599415871996902596926862598035021255584780359396262195103803279188180322259185975758433064602552132685902087782172582697356951487949384199914512284706456295101378315964083825951399277140166495225573492107519435864376928215101754797308748653099155323500425030804100232823290513357194826032478988024335399553555059523787680797530674239314542520178491082473457728798567782349400912318919243828036374285195579243365772953344885235211753051813457718762395138437180050476967171845639690380658583455353083372775534301195826882333517791763473042135274373592718740018000720183062155195704010973390018010673224099324954835111442266188572316441266040459894934299292069836156852792071813200315054722275250691369880979164998090156561507211115478560688908833456753083822843148546307997091412351630135266660153355692629790064078594879383553672775254706264575937460626838569316088468346974733288361544703649698892850843264649814432705159118966243022567284812703810848844715562856162872856520748213634668861581220325870130603886541537650167217042594516038294334387532303457126404316313231550159909581928441008444958658163637661427913872790716507069731769476848474532298736078261491870844810175383872968567515405365946853881866258288217465275011445309194142950789077998977155694501788868625437827427058005812285388885094168405490589481347140892938973795414545891192610918702819509288350019554894495109091690601423964563105377795745829416332242946985762854712800875229359930903353678210397199994557129511608527215596563504440059650707931148867595481683175219052517369828635831463350676295529660777552794734747388782416425265797098883351061027873525330878674582586487058722043335216597379207002461392277772135758559138843234735929958011467771339756368252200224721587125678488695000487760210982272791728035380801563106665158542750428095039799852806322307303691040766224701292140810580204873023374141703566727495818637103031067711018980246410337736158423371852799649959608489013031423646533202632132991685263289151606681391765583633015189413030464362102303334776599497692335602467538739829390772546834450089401037983416729433916899797741030597623778859450988282809399816528282606217891413870405689
Im = 0.012173908090694117400914028111513437604936625482559659771763603873726107072844590000997222527757260109756238544155095317797354921317153228278646602801899836587359600289016682881969739277575609714449846813696853644277143319225719429734905270796374493631327669643407072832477468553858376876047739549059229204230481890995557454928684116818917908841711930809580148937066867557111019180086617834548977887978389230381994008668952189668076941721155656996853587216549985995146283732270308751394922172099452199294287481776600044862892903707625198583283045151631194396232197999805341440958336510492532791038413636669883706182125475054166319674055903401741567574488169059580037390487211937803611869296397513500367927805634469554154412834663725327959008746404508513996616156743355950106512520914312833980042683411185552292784614388033778872572960139973609853056471012707033829242709152402625408821433086231142255764158455702438284437074860856783948455963538777522738857962954275857605155396741905233595020553286664206996530778976355979938990623304541342875511668340336480606778729158581307764117919712359437172005191933084972399818079793875895747100127857412883243284984000970923858236586020368547296399751434719523317381673131029720890008803599576712279820283079684565687478723527119635759459893274395771355861896747286089960482285411384534991770012119698121174685619532603872711050429867674302097639255794018856402030489206314460304543380553672942947888902882359013096419659488996467077706443046948914298130751558465357797741262545661763075993840567561257396794363966978180169096137311826997567251359682830180332531002061629252001016876335439802268702701679777960015588505049554025306761359276474635256361954287033278240368140980538759139037882235639992358553367969017271540231065027325924915601532942711358713411689737846489809455241130223704148051134163970331548495429008934080625162350233055884855384363589465332810710174309863551304549950748543243947257125762482823942426659182489962761911109890390595838762353265197808152843851994781858437089094822848010596187659549358809691904200907172852285191190012893139287211979315795750430519504253272548520557862971714886649860404808484118785506432557260557624504408997689981016118848811000044606108032201518582330762732325041101472836700449365248807564176832490

:origin()/pre00/47db/th/pre/f/2017/064/8/5/hyperbolic_tiling_with_golden_ratio_tiling_pistil_by_dinkydauset-db1bqgh.png)