Mandel machine, mandelbrot set
Here is an S containing connected flat surfaces that contain finite spirals. This is essentially the same as Mandelbrot extremism except it doesn't contain any special morphings. The zoom depth is relatively low because the flat surfaces are simple. With extreme patience this could possibly have been done before perturbation.
Magnification:
2^2300
2.3387835318075833952299998584615 E692
Coordinates:
Re = -1.757815020514644256846266141857013421969581510471697192619014543750862539910176248345266233865392390024843176252229590544760903253573183590356858155739025302772705422648611634367015102943765023521727332014898445347576915327032933568161567758945781787345521032316538466033300432192693920000496948572405668548144538742915464866467058426283695592150827628697973900516210624794145056314956807894359853870767709903505658118822537276452204168232402809098099888685028092696864381011006632339680185628001874412350245960224842722880424383808137690880150070940190494860775510243970941694986513427373174993136015529175050740419435962684501130982993317883613610781830968809102423839701471883726642798361115366720
Im = -0.016329918177612889434702907615202422808907963550614852695065099291992919943403066469735219733618558214016802636744988104285951554839607530014279415472745753145756827547152532012995722285501693808999127352395551084361798200892726019765418110796535709410217219286217514865207063620942150872758580614091523456581402266235612251765744252917344582395322343585115357072083317480551088843340997598965924846976277048444870886934305066095985781471609611135977381983658651149754820159547581447485958173203523386191909942682671896515443613568013235869011073039168730690607962516855239812143754355609315532088375893759621169242056483176252544784494432136913287665091656529414670088580359785690219813023874148420
Here is an S containing connected flat surfaces that contain finite spirals. This is essentially the same as Mandelbrot extremism except it doesn't contain any special morphings. The zoom depth is relatively low because the flat surfaces are simple. With extreme patience this could possibly have been done before perturbation.
Magnification:
2^2300
2.3387835318075833952299998584615 E692
Coordinates:
Re = -1.757815020514644256846266141857013421969581510471697192619014543750862539910176248345266233865392390024843176252229590544760903253573183590356858155739025302772705422648611634367015102943765023521727332014898445347576915327032933568161567758945781787345521032316538466033300432192693920000496948572405668548144538742915464866467058426283695592150827628697973900516210624794145056314956807894359853870767709903505658118822537276452204168232402809098099888685028092696864381011006632339680185628001874412350245960224842722880424383808137690880150070940190494860775510243970941694986513427373174993136015529175050740419435962684501130982993317883613610781830968809102423839701471883726642798361115366720
Im = -0.016329918177612889434702907615202422808907963550614852695065099291992919943403066469735219733618558214016802636744988104285951554839607530014279415472745753145756827547152532012995722285501693808999127352395551084361798200892726019765418110796535709410217219286217514865207063620942150872758580614091523456581402266235612251765744252917344582395322343585115357072083317480551088843340997598965924846976277048444870886934305066095985781471609611135977381983658651149754820159547581447485958173203523386191909942682671896515443613568013235869011073039168730690607962516855239812143754355609315532088375893759621169242056483176252544784494432136913287665091656529414670088580359785690219813023874148420

:origin()/pre00/1362/th/pre/f/2015/012/8/c/flat_surfaces_by_dinkydauset-d8dobba.png)