Shop Forum More Submit  Join Login
Elephant spiral tiling with central transformation by DinkydauSet Elephant spiral tiling with central transformation by DinkydauSet
Mandel Machine, Mandelbrot set

The whole thing is a tiling. In my previous tiling image "Triangle tiling with layered julia morphing" I attempted to make the best suitable julia morphing to be inside a tiling. An important aspect was that it had to connect to the tiling in a visually understandable way. In this image, however, I transformed the tiling itself. I'm using the word transformation for something I would usually call a julia morphing because what I've been morphing here looks more like a tiling than your typical julia set.

The result is something that kinda looks like a cross. Originally I wanted to make a tree-shape. It's something that I have wanted to do for quite a while but there are some obstructions:
1. Transforming a tiling shrinks it by a factor 2 with each transformation. For it to be screen-filling, the initial steps to build the tiling need to be done twice as many times, doubling the required depth. Reaching the desired result of a transformation already requires 1.5 extra depth normally, so each transformation requires 3 times the depth in the tiling situation. That is a very significant difference that gets bigger and bigger as the number of transformations increases. Depth is a problem because it's harder to reach and render at much greater depths.
2. The size of the tiles becomes too small to see them properly after too many transformations.
3. Currently my best idea to do it is this: I know how to make a tree out of a julia set, so I need to make a julia set out of the tiling first. It needs to have enough details to be able to build a tree out of it, requiring equally as many morphings as the number of times new branches split off the center of the tree. It means the number of transformations to build the tree is double that, effectively increasing the depth by a factor of 3^2 = 9 (!!) for each extra increase in number of arms. You can imagine how much larger 9^n is than 1.5^n (n being the number of transformations), as would be the normal depth increase when making a tree. Without any improvements to this, the idea is impractical.

I've said something about making a julia set out of a tiling. The way I was going to accomplish that is by doubling the center of the tiling, the doubling the morphing, doubling that etc. which results in something that, for my intentions, is similar enough to a peanut julia set. It just doesn't have (infinite) self-similarity. What you see here is an early phase of that idea, doubled for 4-fold rotational symmetry.

Magnification:
2^9870
1.4657408896420228648538645519085e+2971

Coordinates:
Re = -1.7498439088634276800460948042342922498295334226571513188740914298952160154495160835921441755475654893999982369876215851617592098468229564680702922351168965760097475776102438594727651509787077718910539436125381937707617605884622639199601316173201755267877495940801859921008741036365835317535325754579310659698172718927559068739259993943489903422220415937003111035235632482550767932444453657416776260831329826364139257446420512980873151922763831367430838804091679690611736967486334921632295099429770359931163075192348893492407688808513153245277731668770979345334874317532468385607661936063534917048525309601960566949936316979336866617749321597297823714013372646899964899346285783803172833516418670799966711933325159465508213919277200803000055872852120819029687577982703573729797193182111971306136776267365805118136976570306298588531306446692744199554252596954263700577089578723507789675760521447513869517740980613852561229822340340821960377577072823654587832275540464160845654172941864633386678150003773464150372439849205478866686753163400567627899379488621753733939322237710510489899894319695620114081220960799108362857739101378201141015236614994736212399978478462228663563168926677891397591332060282422583766336444493991592761516899516720428428445030542837098451502818031894096231891126049834098808975971389759975985150362816201102121018083628059439863570774916034325209057641891673750907649855902580808823385917908184577563638857597924200360805831466148522376361731640904864693988420015313810216766041336750368569166250692222461154246966278977859304313592575028322631156576324942021305183391989500220481100230016404570236474879345415061504192883601549161673363117250118782954658561767077600417297183475910010828666415715253229639189256362950223239974866161213210866713886300308480188590857334497621417446574144421055762236175453201119570339202660482102753858422401131043468838188246221038734014328251300488439192100059396153720293433575490048680511435309255321529303432822265191296671629725830605376213014511810829167186060245587406244714168349595569030001662916290777088899112276716205440876804982372349280290334339551559023028248022816778418359021526473978858832783517847281048800951679546036790338353953143256548965295380780837896255691843446714391071948040002697770654394052015260255393376175280788923261119479110963358582732044643161872472885492978505953850286721671320296384955791562868032502403710449580790524128525636701394699880064688726954218490244554281678600023139268604824255407806421895967872781732308596780588474743680047670637781940624315346439381802681954581244045582241975959875957962316604643837152815035116622127450845860253963974889814159946447197039023379170539609194628016770286801768992266381824648034095425613913539495478717100958571514945248496902412048555941047782774510767649781516106282821761253790079756292170876360361748187034655726742995944555407678379822885287868173604717194566230010229214603428202446987503287921106362107355612486404563715497

Im = 0.0000000159959473146319642717540099365976948500705065715209798252640461993465538628308271291417567856676375259782625663886020914208896933202641339653886737470769520025797007857355688277340916809887701394149355736780982888336303707426011948432980348233270700327920071207166294721964801722915416135341446136599969054710440421562301919810640516949611055655445374278378523875044932672841451066063600543720534132018364998118432787011667094357767592746119445662386613217689596616495795570879453511631475015465202878892577516514921740593502750764153271780790082960896474165423118429738903206147242877552749256873871105093358252352732331060728483105073241167843748437518392524351874358787417493003841145166331703983481875389753117117932032962953506584753054080076767788009823281476265482712320371045802342552403470963012571639687849320512232492175287872997902858556379366234132626695909943079162218988205311016002657446116689747111210533111481206942309139308952184605691152141960826333395982721345476132751975971022146535204595433352512002578302892490105214373912229371581958063660115836891169373147116580207143925553002261364624545240328038200540148829737033585513962225949452826609947213453364282239248466862885661935973676913754680865468875965089162465135074498164822314446163324863073935405497487064708583916816516533975726680127663202426511499033222075508877083212530649296209358665321153111812420249785544611998025674846336691047595198408371194264939589594429132157351553726174718486809904515040993978014361545147263981626591617347758542367019696332480685643916496305189291127422116306514284473360959979610585543698541400957830806278941724934040493095816324802704019794878310546321765246167763900378695196267121408050678909760576027231496049406396550408670379362262182178544798472264457901620793091459280836757386717166694446359647130402178640031711905205225841807086759410586590898742578188102841587698798631546687215830493331902873137159054492715093065045167280084467604666680883585150536344069812477725101393596817253505556349472358259816524030849996642801406956427167170327092676365024688733492601876964692824759894626974050081365969753000708139172781769560750226186916342763822262989132793630073189830957326040774791732039169455213647452293020342005664871046362252739644996046672804407485968984950340837280695544530862471085846992558012998912101664588802674745392701373309979629845938837179272067628387974487488874154567647656115499120884893301050640923839135312465224721530140263802091571317219010359968405330584283214583937484038726235020015489667750541678639777104491176726074347886713693804393387049866338689190684271772913934340107566951726283444179319632633810736907114231121232694263979534185977644430817648323272004289857100248104618629806930539306672302326896495469553220010205700230257475740272421099410035434715924022827075312970916872859580939642662854699129713633533001625605559242928706357843554207880763875716758293274507690637883513572704426297634947130620506
Add a Comment:
 
:iconbryceguy72:
bryceguy72 Featured By Owner Jan 24, 2018  Hobbyist Digital Artist
Wait, just to be clear... this is a pure Mandelbrot render, right?  No polar-to-rectangular or hyperbolic transformations or other image manipulation, right?  You found this area by understanding how the apparent Julia sets transform after repeated zooming into the Mandelbrot set.
Reply
:icondinkydauset:
DinkydauSet Featured By Owner Jan 24, 2018  Hobbyist Digital Artist
Yes, that's right.
Reply
:iconadapterr:
ADAPTERR Featured By Owner Oct 4, 2017
OMG you have sooo cool ideas! :) (Smile) :) (Smile)
Reply
:iconfractalmonster:
FractalMonster Featured By Owner May 26, 2017
Absolutely marvelous :omg: :wow:
Reply
:icondinkydauset:
DinkydauSet Featured By Owner May 27, 2017  Hobbyist Digital Artist
Thanks!
Reply
:iconfractalmonster:
FractalMonster Featured By Owner May 27, 2017
No problem :aww:
Reply
:iconsabine62:
Sabine62 Featured By Owner May 26, 2017
:clap:
Reply
Add a Comment:
 
×



Details

Submitted on
May 26, 2017
Image Size
42.6 MB
Resolution
4632×4632
Link
Thumb

Stats

Views
408 (2 today)
Favourites
12 (who?)
Comments
7
Downloads
16

License

Creative Commons License
Some rights reserved. This work is licensed under a
Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 License.