Recommended for you
Dragon Tree with Crosses
7 2 247 (1 Today)
Published: May 4, 2017
Mandel Machine, Mandelbrot set

This is very much like a normal tree except it has a "connected" interior with some crosses inside it. The crosses are achieved by making a stripe out of a low-depth embedded julia set by zooming into one of the main spikes of it, before doing anything else whatsoever. Then, if you deviate from the current zoom path (=the way to the closest minibrot? I think that's how it works), the first things you will see are the julia set and the stripe again because of the rule: If you deviate from the current zoom path, you will see everything you've seen thus far again.  This causes the stripe to be all over the julia set.

Each time I increased the number of arms of the tree by morphing it, I zoomed into a strip inside it, thereby morphing the stripe into a cross. After n morphings, the number of crosses has reached 2^n - 1. This technique is an exploitation of the fact that "what happened thus far" is just 1 thing if only one morphing has been performed. Shapes other than crosses are possible but with the severe restriction that they require only 2 julia morphings to be made.

I wanted to publish a new render sooner but I couldn't due to computer and internet problems.

Magnification:
9937.724
3.5728322825644750137997369306096 E2991

Coordinates:
Re = -1.674364274409247056603320660316824291970062080466541705865560857514382711264381692391451883778167828857329201573088543356588985766062306089895493333839285042788226726677595275366306242750145216885463147565567474862604416261650846284872472465600450893875524615783023617525710353201753108424509867471987138259001030929193190257819073677175100723852940699115248913293168821487104061449545491631051406293054976737459367481850008115092269818719734865312103974302210015932153840455404040157021485400702101168210188771065769722284590129215517165387174500770793312078593263338312594734548134878619509663429586307547732042821766089499919742900707219606915115849846801107087520881411133151676030353408340982573470025825761630441460328129901466249305886338781941212603012374275159494065916072249954878131716732287280011025965861954279370136215182084540844059744932438037348130437853167311846775225704650375858138851127822075084116361941938914845130880136934326125923195131408387017248499188412482964345903899167305387562133010549689893116398282067318135507950676416282694063841483392803688797051776281618715564589820037717309455570188774581997239588388350010896731676949877670747009414625621358296846538667790799726441198100364300343046328393666959818708022982397960166464337974286727140690404934174725525367050768641098770911362560825038751962502526899632804940268295378718753613181256415892883387487578373020210726434716909533954219074351036105687479708986970938006524819499490191710248908640269568407347625381390710334138559123133945780970959415656043832501672797883930756333910229726824291965947826807054218203617943739661160966129744228079904915302657670156019053530875304491508694706669262099444154674173996825443294545330740312620297851767049976911599032063855417151818935495914521815410009393008276881759426938274326547667749262733114170356888447566163396116220555016322626579988097414618977911188245538396896242976964208367430484740914354354528808307152787999057668887103517988627124267089471758240320611809387082004487035345009122755385997984145162488913787106975210603811467950410491633850332653831663071408005434622635171169985863573277688673027292642172734040779969307366509521300841222857437913686314792646647028800345640911788424421367051102200944116602994432427570544317350529438499599780444345183597397644823580098767289539464663268209626604647709544185679901285362670310529049634322640031020909033611307225896851076488091273514348023315970064480536354408463272202124192636623090058926964005367999418811975933355629375354240368054332341818538310934418703362565445715152002093582223578198857156572708021877000145696658169354591325063201633608232156674959072843115622394357111645826411812810925045168630404874260497850744961467429362371018169829441663779912873383465377392315629330724767906707072002408246102902518571639116851530501918164958403283652496104465910387686114717039643792567655290370494523755672818407386924171118632398933629073020312842337862256353043936666033255729927952494209336

Im = -0.005730814606985401970577481634190834621261147564231582257383462279531965934792390239589022977848181048743308873303850942351370179702716043058031854253382567578812804112163352292678530464817866667590081272998821281633982966472497478940656681353848562065722506355663506799097672613853745153799137823076191429105584527658157283724135231977733124448574100242322788207086001238960736138620158398626606397395754330550500965735039865372243220286649057575825753075889975216071209462813267359072872896838952029670806853436712567316740315560096460904612739420176426843706430659514841405867159543147317850294828259827722088814404893801315006090520636889065376190362263717505996863941359837596472492700506264181002892468357063964900600999128189479649933801144301262204049293032789068731214332736794757689980599961274826242892864707492764888057921575589121829933572981411120161121006149628670218855420483427517185372719238201631509108624871993512905613210312771648430808659595453887151166837863707344948840866153808521046114699155207324752958128218548451740204528214553652017385115796070129350213333363101040119337866056336550868923336389044218796735866699066026209204957735102430830809139411487483757736405051629126773296236174608909191103767680488299586165806147919087006038653819792540071937059254258836642561498616010045634855887756089476786646514540391247968543507343654331533937093449201966697832856042482476956661540823560846593684631039752078353433243014571537687668909300620345937542445705578493029994968906297947687543421535082691431764862532701386528630501529628145042195469205422587882818785926761242969751366656755800508073016986551315485356897206441848792549267914750426038245957322441197181339022357826667315399598308054865841960161247315259515402789110563055653361887146329378467725316622413245855695126701632570601192581110420288344537145182935683079262187568046391327237757228523323572989013646577942736559279321754751098048950354245998219132826392853671690485155451402099348284267798233335679511588408703672881812513995057006543563947691983072284957064328548091287917220226890795686141805522763750976104897259091503903891256778009655578746767607017420296573954503628999312902472420505966391357971522158427620775002107641628641698282060853267989961046317305356131318661231150844339714213880433153866855898593536759481616290092387370967376763934481149475584200118063443135177471661964827339286587976089248595599820673422064770950627173525051250623856318020223795594711271224753548156049682993146461566284155044718701464473163197282819432336111554152186710725524848185229451674171880629202097070008379287975708328255275457641605767689267929511476858690082021347875325606761014376504007997888170206099736908791581906033566156899680951943978531415210089410269161064953039775427475369610078625130017020547911270294252794301614970799269777276529673466375995996705077249704119455492793616468354129955576912161420391114229036491332091648318678257751531283695218584897296145309419153287475547062207256
Image size
5328x3999px 32.31 MB
Recommended for you