Recommended for you
Featured in groupsSee All
DinkydauSet's avatar
Connected tiled four-armed dragon
By DinkydauSet   |   Watch
13 6 235 (1 Today)
Published: February 15, 2019
Mandelbrot set
Computed with Kalles Fraktaler

colored with Mandel Machine

Download for 8000×4500.

This is a mix of Dragon (Deep version) and Lattice evolution. Like Dragon (Deep version) it's a 4-armed dragon (if that makes any sense) and like Lattice evolution it's a completely connected tiling. That's unlike 3rd Order Evolution Of Tilings, for example, which is a collection of separated tilings.

The new idea here is to make a 4-armed dragon from a 4-fold rotational symmetric tiling and fill it with more 4-fold rotational symmetric tilings. Because of that there are 4-fold rotational symmetric elements all over the place. In theory the same can be done with 8 but that's far deeper than what can be achieved. Unliked Dragon (Deep version) the dragon here is not as complex. More morphings would have turned some of the 4-fold points into 8-fold, breaking the pattern. Usually the patterns that I make are finite approximations of an ideal that requires infinitely many (repetitons of the same sequence of) morphings, but not this time.

Magnification:
2^10719.5
8.26714980770 E3226

Coordinates:
Re = -1.750347190489936502150776819735342819367436255782331484300992001789621287742573135579208092945218408758780763280360580574824056633225773087486242020418233361418921119794385572917168230986412715575596424807586071857601144586498789781209707703283291920030307007171722623320267868743036128973472578752605753954857111617949118641559530242325275448313837739459120395301538631318212469265652054838570659938041549467772375786270344115736606012230651258611882172657357838590780124486394864463010756600562855953490560654938735186035174061035256198324087494919798049947962104211640548558809262548544812456100991835967089876938741763614656124850000167650473982394977881578418585857253216648784744951398168200618339676767983359419577161370595341652147851470839109642515214198486059688935638295197819683480433262822250357411075490872749710226227028275275098763200460666654239433399513728827328394481149664242852108615882238211715277848699045697115093454372392328234099701152854779178961870915256145169081107953209674990889012087824814571069657468017674806373611939511212778132365276389931660232712896901080076306333598491591705808496339270155561411340251764279642850707010839266972595916359278830687615934957745219391405123614236756462542053219360910274166878165169668220618264264653497220772606553361322912795798676857123703140874679948058428168075874902260517135424930140829510820809625344789347777347238446962557684265038036259756667372400887260527582071003298542706695593813318259904489546305523570494347313368160839100822760106299717475780488298836785815557683031050679151697741961949358950404547320826304689869450149654564720040738862657481883828139424865983192126024864922725137728111263912846113368573564511349905299907393139862019051558922231650831401956571931360720298093834512115070353154172267936561065181614328764498841366027133700743193046385309933194166030515084946867967741538990366233727237347223880889529671670223631576247768101955033507904222491387720504619908744096836569236411446629094733330453770375476328218625057547162090778521536404080951820067532758466314279099165368551373925650357889497061021917554658725840454348285999131719915062586591809383803866603869887182233507104481393250405253639841298034585569088226747319462926263898552577247693366187083721878868639568866907604069220562203066590755358001465888169902173400311652854341093103101390832953938982220586878179073457982559766156595018980286956247107826554171040806025198372746512234663569086867040340002572864648865522574714983643507065720845989371951091861730225442495270356586441755377943658002975390783159280810169525205112449352595938714422732177686360824159173553077542079445311191874665206889635640476747481118689397838462107642481913133347636336564465718916699637510555609150209610924910977702822385364020364593691405185094052828801825056103074915221246243415649640714850882933852566268183697044507381574646648975259317559163297528144384277230812066762808152001155982321658325878031669358656210807146721554077970491327667852821220732469477789879277148549757683098850640174563089692741200698593801071327126727399454852694090709474124272521177666290168915393615420833113805207454967315229489560103196596782655492506397794059905264643931282912628443250779118709047344925726741813594086405656223050249860634616987873682532176496078078386546523434528992516858788653220793296339312362759337426839954872474958003500535484589981658312181249351647128336007220988360615242794984699836076323436450884947934731517289332353412006780731253735985388515554805237675813241347638283357658893245852947893538007349382765238463097612606407397158983887839912870885873888491275348845726081306398253399233092260605375642718130739021163871218130403526664922668973736934062700043769505710019290238958730149139537877081072344101930586423451714973969542936326062753177243810476352106492191412367428317354809271790156551249913729359125200171690563997161967754853165973596845531287558070540550408510500769660645820943645146968272857351112146577696205756092146514943898804690098952942889095340963820507829838703432325576881145582884827204904474077227340529968804241208812808321787556600108394082872693081405643556676127020039456004380488948497580723594555144925570031327752350092402394848607455057427936633442713296696464994014416445851518331478430237221053716838910378932419373531876501682817132536431353452785807684190853286404224391673954571945905214229576793478210441967602240813556588409359073878248059799482686430480780848934487244161822902143667079870763189876156130948608345203596537624320746981222484031374776390948152610380483197726531833044407176585923336180135628597603713468151021325200704835774320911186350183011209632968338000005999978999849999865999977000036000125
Im = -0.009671623381213996602469565274562720603527196891055554047410306620151847546786838267956636536204205234590183965455013906108212709155402533951980074354499138531330443080683977633160742401038190739848914014738935474826498497552132521177001687373346462823431847323955558661356880315201625504337618018856629588220911441005586850658277571471469277723562900258372706073478963348593407534904396212598390590966900697921511253061103033389392829688840140931101905883661383867955339555201028180445632899425630885354945580880114142898953461733740092375478971742054023045647589371567332210527683002771044291460045717280563992629845351372483581540347686913007715754473152765598161854224418974483375991879976960337701787553293916733802380786407649482668648646886625514672894943163614401940512908178469241276182132333062196493713677744653600034785237909263630473955504907702149631684161730352195165741415999764461556252599159193141599380785003306840098984912413644236412916369340147385498695532745862476054468041673609474811070436645722737982262056747400371172817067596671312045813592902720039399812752259051801249596005277153072111896486543716397297610088943899982832762114093243425021310572060325279681451451069856146121323899041041417908252958867032497570389553537345189671329196971133878146386604597827104211868862721591334165847987223301253835305748432924246359303059263368020739458652961715952603439439201943051863108118233650214024797290543587977789273448353161028138493434984433438421037685148576830733366706254767562715738279289224112571769853117555192654706431350590507200761644202027359344168683529123148191750414350141793574368539001343998781799280965254524967028168583621435302778413048364152475151630114695389814751875206213012824853920788712297996870150000687861361560403108557021338964665047236320287835801315221076771784109142638736659078478053279819639351527381837010673583518040268793699183984047036724909682702063449331901780799081138915472995092977647216724217814823766619566681996329692794029667809600338263597955783792785808790602243481239270387364755673177959636217931887554742141942335158208991337554924864038096747786625603121916010307101152433435052806882340877950337262502705082956762724554382211227702072179482438199478403331697525832360466064447234473024471924240820989768636117574822662714372221894859962016460167715400538732875907537864362718839303578690537885093730717756806659969848434731736819867078256436224549944786022782426125063040155559371887613717820176586543192471815443113073031629400122507215034930824679141033462670738166966805893555229440669452880519428601945800305123939043099618593641213888602912843208870573375710491045806045970030473554780857705919376240155903392444661715929169264616065864427342516363028622996400948444591546691433571400885797589667315807499925527488039117077046443329768026031340147762168972594019893527738844665104546557515431772088032190650330651205600439514169857333781255765017310142795048617953455878225282140584876208038589278088396030055723605627724926454386265442505844951578370818700569687384956148729594684757967940624187444816284709795187071911745930696552653368563280152335806759463291445616305815635020119823325540401883441957651844750343638144096841335948259848770526833126881265143413329261783837590127633840513713216184519958638223117136482905399309599805483293937834956904092422281087037521920922937700307186372113906344124898059656785977607560084430167671144650244860534018392315473907073079820120751246987962508240927681544904189303493274609161947168150187391581321734635942965529503931058274748445866374685509271743153021560577378732307757255717238747987547257160649871363594167248319782025917635656246443753125037789370532880549504980251886068548949060590937998470292734275607113905641422892380984258263029234426262088919571518244932195478737397176573871445682702614490861975178742075516754733324587072203373758304994560106262390176006165395633410594701494799341390124978344884465749436634528822568868401653007551758051849229481478067017601902972384807279767752598765856160365789092274771000011985234415411196357098561672153309864964593322409334448112585872448474267720381881034114639346347807598228876412066054582514705864794713357428686815114781833742744686657972796040181487482492015475035549903655637747683084989454055492950340240062530249594408749735677969661540172359221943000977097777370962209821652305003449737505948253905412028913062393520782348010210574526259837612829616579247042150912908330755267860262215539556964577924143582448013819824636681075009217712883240808436212615826999205800811707553442891507626789004369399121871864912218585338088511986900721130240958787597315789847560814236879307715000000000000000001000000000000000000000000
Image size
8000x4500px 75.67 MB
Recommended for you
Featured in groupsSee All
Comments6
anonymous's avatar
Join the community to add your comment. Already a deviant? Sign In
DinkydauSet's avatar
DinkydauSetHobbyist Digital Artist
Thank you
MandelMeute's avatar
This is amazing! May I ask how you pick your colour palettes?
DinkydauSet's avatar
DinkydauSetHobbyist Digital Artist
Thanks.

I design gradients in photoshop. When I still used fractal extreme I used the built-in gradient design tool. Now I use photoshop to make gradients, which are then just images at a resolution of 4096×10 (but could be any resolution). In mandel machine and kalles fraktaler you can use images as a gradient. It's annoying because making a change to the gradient in photoshop requires saving it and loading it in the fractal program to see the result. Usually I don't start with nothing though. I have a collection of gradients that I often edit to make new ones. Using many filters on top of each other can cause noticeable distortions in the colors that I think are due to rounding errors. When needed I "fix" the problem by applying gaussian blur to the whole image, making the gradient smooth again.
MandelMeute's avatar
Alright, thanks for replying this quickly. Sounds like a great way to develop palettes.
anonymous's avatar
Join the community to add your comment. Already a deviant? Sign In
©2019 DeviantArt
All Rights reserved