Shop Mobile More Submit  Join Login

Similar Deviations
The first draft of a t-shirt design that I'm working on for Fundamental 2009. The type is hand drawn on paper, scanned and then redrawn in vector format using a total of 4 colors.

For more Fundamental stuff, visit [link]

Comments and :+fav:s appreciated. :) HIT DOWNLOAD for a high resolution preview.
Add a Comment:
No comments have been added yet.

Automech 2010 Car wars ad 1
Add a Comment:
No comments have been added yet.

One more of my recent t-shirt designs.
Add a Comment:
No comments have been added yet.

Software:adobe ps cs3

Advertising for playstation 3!
Slogan: this is living... :D
Add a Comment:
No comments have been added yet.

Add a Comment:
No comments have been added yet.

Quickly made poster for one party timed to Day of Revolution in USSR.
Add a Comment:
No comments have been added yet.

F-15 Eagle

The F-15 Eagle is an all-weather, extremely maneuverable, tactical fighter designed to gain and maintain air superiority in aerial combat. The Eagle's air superiority is achieved through a mixture of maneuverability and acceleration, range, weapons and avionics. The F-15 has electronic systems and weaponry to detect, acquire, track and attack enemy aircraft while operating in friendly or enemy-controlled airspace. Its weapons and flight control systems are designed so one person can safely and effectively perform air-to-air combat. It can penetrate enemy defense and outperform and outfight current or projected enemy aircraft.

The F-15's superior maneuverability and acceleration are achieved through high engine thrust-to-weight ratio and low wing loading. Low wing-loading (the ratio of aircraft weight to its wing area) is a vital factor in maneuverability and, combined with the high thrust-to-weight ratio, enables the aircraft to turn tightly without losing airspeed.

A multimission avionics system sets the F-15 apart from other fighter aircraft. It includes a head-up display, advanced radar, inertial navigation system, flight instruments, UHF communications, tactical navigation system and instrument landing system. It also has an internally mounted, tactical electronic-warfare system, "identification friend or foe" system, electronic countermeasures set and a central digital computer.

Through an on-going multistage improvement program the F-15 is receiving extensive upgrade involving the installation or modification of new and existing avionics equipment to enhance the tactical capabilities of the F-15.

The head-up display projects on the windscreen all essential flight information gathered by the integrated avionics system. This display, visible in any light condition, provides the pilot information necessary to track and destroy an enemy aircraft without having to look down at cockpit instruments.

The F-15's versatile pulse-Doppler radar system can look up at high-flying targets and down at low-flying targets without being confused by ground clutter. It can detect and track aircraft and small high-speed targets at distances beyond visual range down to close range, and at altitudes down to tree-top level. The radar feeds target information into the central computer for effective weapons delivery. For close-in dog fights, the radar automatically acquires enemy aircraft, and this information is projected on the head-up display.

The APG-63 radar was developed over 20 years ago and has an average mean time between failure less than 15 hours. APG-63 LRUs have become increasingly difficult to support both in the field and at the depot. First, individual parts have become increasingly unavailable from any source; incorporating newer technology parts often entails module redesign and fails to address the root cause. Second, continuing reliability deterioration impacts both sustainment, particularly during deployment, as well as ACC’s ability to implement two-level maintenance. In addition, the APG-63 radar has virtually no remaining processing and memory capacity to accommodate software upgrades to counter evolving threats. The APG-63(V)1 radar has been designed for improved reliability and maintainability to address user requirements. The radar incorporates components designed for improved reliability and lower failure rates and enhanced diagnostics for improved fault detection and fault isolation. Along with other design features, these should improve radar reliability to 120 hours MTBM, an order of magnitude better than the existing APG-63.

An inertial navigation system enables the Eagle to navigate anywhere in the world. It gives aircraft position at all times as well as pitch, roll, heading, acceleration and speed information.

The F-15's electronic warfare system provides both threat warning and automatic countermeasures against selected threats. The "identification friend or foe" system informs the pilot if an aircraft seen visually or on radar is friendly. It also informs U.S. or allied ground stations and other suitably equipped aircraft that the F-15 is a friendly aircraft.

The Fiber Optic Towed Decoy (FOTD) provides aircraft protection against modern radar-guided missiles to supplement traditional radar jamming equipment. The device is towed at varying distances behind the aircraft while transmitting a signal like that of a threat radar. The missile will detect and lock onto the decoy rather than on the aircraft. This is achieved by making the decoy’s radiated signal stronger than that of the aircraft.

A variety of air-to-air weaponry can be carried by the F-15. An automated weapon system enables the pilot to perform aerial combat safely and effectively, using the head-up display and the avionics and weapons controls located on the engine throttles or control stick. When the pilot changes from one weapon system to another, visual guidance for the required weapon automatically appears on the head-up display.

The Eagle can be armed with combinations of four different air-to-air weapons: AIM-7F/M Sparrow missiles or AIM-120 Advanced Medium Range Air-to-Air Missiles on its lower fuselage corners, AIM-9L/M Sidewinder or AIM-120 missiles on two pylons under the wings, and an internal 20mm Gatling gun (with 940 rounds of ammunition) in the right wing root.

The current AIM-9 missile does not have the capabilities demonstrated by foreign technologies, giving the F-15 a distinct disadvantage during IR dogfight scenarios. AIM-9X integration will once again put the F-15 in the air superiority position in all arenas. The F-15/AIM-9X weapon system is to consist of F-15 carriage of the AIM-9X missile on a LAU-128 Air-to-Air (A/A) launcher from existing AIM-9 certified stations. The AIM-9X will be an upgrade to the AIM-9L/M, incorporating increased missile maneuverability and allowing a high off-boresight targeting capability.

Low-drag, conformal fuel tanks were especially developed for the F-15C and D models. Conformal fuel tanks can be attached to the sides of the engine air intake trunks under each wing and are designed to the same load factors and airspeed limits as the basic aircraft. Each conformal fuel tank contains about 114 cubic feet of usable space. These tanks reduce the need for in-flight refueling on global missions and increase time in the combat area. All external stations for munitions remain available with the tanks in use. AIM-7F/M Sparrow and AIM-120 missiles, moreover, can be attached to the corners of the conformal fuel tanks.

The F-15 Eagle began its life in the mid 1960s as the Fighter Experimental (FX) concept. Using lessons learned in Vietnam, the USAF sought to develop and procure a new, dedicated air superiority fighter. Such an aircraft was desperately needed, as no USAF aircraft design solely conceived as an air superiority fighter had become reality since the F-86 Sabre. The intervening twenty years saw a number of aircraft performing the air-to-air role as a small part of their overall mission, such as the primarily air-to-ground F-4 Phantom and the F-102, F-104 and F-106 interceptor designs. The result of the FX study was a requirement for a fighter design combining unparalleled maneuverability with state-of-the-art avionics and weaponry. An industry-wide competition ended on December 23, 1969 when McDonnell Douglas was awarded the contract for the F-15.

* The first F-15A flight was made on 27 July 1972, culminating one of the most successful aircraft development and procurement programs in Air Force history. After an accident-free test and evaluation period, the first aircraft was delivered to the Air Force on Novermber 14, 1974. In January 1976, the first Eagle destined for a combat squadron was delivered to the 1st Tactical Fighter Wing at Langley Air Force Base, Va. Three hundred and sixty-five F-15As were built before production of the F-15C began in 1978. In January 1982, the 48th Fighter-Interceptor Squadron at Langley Air Force Base became the first Air Force air defense squadron to transition to the F-15. After twenty years of service, the F-15A has recently been reassigned from active duty Air Force fighter squadrons to Air National Guard units. The F-15A is flown by Air National Guard squadrons in the states of Oregon, Missouri, Georgia, Louisiana, Hawaii, and Massachussets.
* The first flight of the two-seat F-15B (formerly TF-15A) trainer was made in July 1973. The first F-15B Eagle was delivered in November 1974 to the 58th Tactical Training Wing, Luke Air Force Base, Ariz., where pilot training was accomplished in both F-15A and B aircraft. The F-15B incorporates a tandem seating configuration, with a second crewmember position aft of the pilot's seat. The primary purpose of the F-15B is aircrew training, with an instructor pilot occupying the rear seat while an upgrading pilot mans the front seat controls. The rear seat pilot has a full set of flight controls and can fly the aircraft throughout the envelope, including takeoff and landing. Even though space is sacrificed to accomodate the second crew member, the F-15B retains the same warfighting capability as the F-15A. In keeping with the trainer concept, however, the rear seat is not equipped with controls for the combat avionics and weaponry. In fact, the rear seat is not a mandatory crew position, and F-15Bs are often flown with empty rear cockpits.
* The F-15C is an improved version of the original F-15A single-seat air superiority fighter. Additions incorporated in the F-15C include upgrades to avionics as well as increased internal fuel capacity and a higher allowable gross takeoff weight. The single-seat F-15C and two-seat F-15D models entered the Air Force inventory beginning in 1979. Kadena Air Base, Japan, received the first F-15C in September 1979. These new models have Production Eagle Package (PEP 2000) improvements, including 2,000 pounds (900 kilograms) of additional internal fuel, provision for carrying exterior conformal fuel tanks and increased maximum takeoff weight of up to 68,000 pounds (30,600 kilograms). Externally, the differences between the F-15A and F-15C are so slight as to make identification difficult; the only reliable indicator is the aircraft serial number. All F-15As have tail numbers starting with 73- through 77-, while F-15Cs have tail numbers beginning with 78- through 86-. The F-15C is the Air Force's primary air superiority fighter, serving with active duty units at Langley AFB, VA, Eglin AFB, FL, Mountain Home AFB, ID, Elmendorf AFB, AK, Tyndall AFB, FL, Nellis AFB, NV, Spangdahlem AB, Germany, Lakenheath AB, England and Kadena AB, Okinawa. The operational F-15C force structure is approximately 300 aircraft assigned to operational units. In the mid-1990s the F-15C experienced declining reliability indicators, primarily from three subsystems: radar, engines, and secondary structures. A complete retrofit of all three subsystems could be done for less than $3 billion.
* The F-15D is a two-seat variant of the single-place F-15C. The primary purpose of the F-15D is aircrew training, with an instructor pilot occupying the rear seat while an upgrading pilot mans the front seat controls.

F-15C's, D's and E's were deployed to the Persian Gulf in 1991 in support of Operation Desert Storm where they proved their superior combat capability with a confirmed 26:0 kill ratio.

The F-15C has an air combat victory ratio of 95-0 making it one of the most effective air superiority aircraft ever developed. The US Air Force claims the F-15C is in several respects inferior to, or at best equal to, the MiG-29, Su-27, Su-35/37, Rafale, and EF-2000, which are variously superior in acceleration, maneuverability, engine thrust, rate of climb, avionics, firepower, radar signature, or range. Although the F-15C and Su-27P series are similar in many categories, the Su-27 can outperform the F-15C at both long and short ranges. In long-range encounters, with its superiorr radar the Su-27 can launch a missile before the F-15C does, so from a purely kinematic standpoint, the Russian fighters outperform the F-15C in the beyond-visual-range fight. The Su-35 phased array radar is superior to the APG-63 Doppler radar in both detection range and tracking capabilities. Additionally, the Su-35 propulsion system increases the aircraft’s maneuverability with thrust vectoring nozzles. Simulations conducted by British Aerospace and the British Defense Research Agency compared the effectiveness of the F-15C, Rafale, EF-2000, and F-22 against the Russian Su-35 armed with active radar missiles similar to the AIM-120 Advanced Medium Range Air-to-Air Missile (AMRAAM). The Rafale achieved a 1:1 kill ratio (1 Su-35 destroyed for each Rafale lost). The EF-2000 kill ratio was 4.5:1 while the F-22 achieved a ratio of 10:1. In stark contrast was the F-15C, losing 1.3 Eagles for each Su-35 destroyed.
F-15E Strike Eagle

Although the slogan of the F-15's original design team was "Not a pound for air-to-ground," the F-15 has long been recognized as having superior potential in the ground attack role. In 1987 this potential was realized in the form of the F-15E Strike Eagle. The mission of the Strike Eagle is as succinct as that of its air-to-air cousin: to put bombs on target. The F-15E is especially configured for the deep strike mission, venturing far behind enemy lines to attack high value targets with a variety of munitions. The Strike Eagle accomplishes this mission by expanding on the capabilities of the air superiority F-15, adding a rear seat WSO (Weapon Systems Operator) crewmember and incorporating an entirely new suite of air-to-ground avionics.

The F-15E is a two seat, two engine dual role fighter capable of speeds up to MACH 2.5. The F-15E performs day and night all weather air-to-air and air-to-ground missions including strategic strike, interdiction, OCA and DCA. Although primarily a deep interdiction platform, the F-15E can also perform CAS and Escort missions. Strike Eagles are equipped with LANTIRN, enhancing night PGM delivery capability. The F-15E outbord and inboard wing stations and the centerline can be load with various armament. The outboard wing hardpoint are unable to carry heavy loads and are assign for ECM pods. The other hardpoints can be employed for various loads but with the use of multiple ejection racks (MERs). Each MER can hold six Mk-82 bombs or "Snakeye" retarded bombs, or six Mk 20 "Rockeye" dispensers, four CBU-52B, CBU- 58B, or CBU-71B dispensers, a single Mk-84 (907 kg) bomb F- 15E can carry also "smart" weapons, CBU-10 laser quided bomb based on the Mk 84 bomb, CBU-12, CBU-15, or another, laser, electro-optical, or infra-red guided bomb (including AGM-G5 "Marerick" air-to-ground) missiles.

Conformal Fuel Tanks were introduced with the F-15C in order to extend the range of the aircraft. The CFTs are carried in pairs and fit closely to the side of the aircraft, with one CFT underneath each wing. By designing the CFT to minimize the effect on aircraft aerodynamics, much lower drag results than if a similar amount of fuel is carried in conventional external fuel tanks. This lower drag translate directly into longer aircraft ranges, a particularly desirable characteristic of a deep strike fighter like the F-15E. As with any system, the use of CFTs on F-15s involves some compromise. The weight and drag of the CFTs (even when empty) degrades aircraft performance when compared to external fuel tanks, which can be jettisoned when needed (CFTs are not jettisonable and can only be downloaded by maintenance crews). As a result, CFTs are typically used in situations where increased range offsets any performance drawbacks. In the case of the F-15E, CFTs allow air-to-ground munitions to be loaded on stations which would otherwise carry external fuel tanks. In general, CFT usage is the norm for F15Es and the exception for F-15C/D's.

The F-15E Strike Eagle’s tactical electronic warfare system [TEWS] is an integrated countermeasures system. Radar, radar jammer, warning receiver and chaff/flare dispenser all work together to detect, identify and counter threats posed by an enemy. For example, if the warning receiver detects a threat before the radar jammer, the warning receiver will inform the jammer of the threat. A Strike Eagle’s TEWS can jam radar systems operating in high frequencies, such as radar used by short-range surface-to-air missiles, antiaircraft artillery and airborne threats. Current improvements to TEWS will enhance the aircraft’s ability to jam enemy radar systems. The addition of new hardware and software, known as Band 1.5, will round out the TEWS capability by jamming threats in mid-to-low frequencies, such as long-range radar systems. The equipment is expected to go into full production sometime in late 1999.

The Defense Department plans to sustain production of the F-15E for at least two more years, purchasing three aircraft in both FY 1998 and FY 1999. Without FY 1998 procurement, the F-15 production line would begin to close in the absence of new foreign sales. These six additional aircraft, together with the six aircraft approved by Congress in FY 1997, will sustain the present 132-plane combat force structure until about FY 2016. Under current plans by 2030, the last F-15C/D models will have been phased out of the inventory and replaced by the F-22.
Service Life

Designed in the 1960s and built in the 1970s, the F-15A - D aircraft has now been in service for over twenty years. While the Eagle's aerodynamics and maneuverability are still on a par with newer aircraft, quantum leaps in integrated circuit technology have made the original F-15 avionics suite obsolete. The objective of the Multi-Stage Improvement Program (MSIP) was to set the Eagle in step with today's vastly improved information processing systems. Some F-15C/D aircraft (tail numbers 84-001 and higher) came off the assembly line with MSIP in place. All F-15A/B/C/D aircraft produced before 84-001 will receive the MSIP retrofit at the F-15 depot. Improvements incorporated via MSIP vary between F-15A/B and F-15C/D aircraft; the C/D MSIP has been completed. However, all air-to-air Eagles gain improved radar, central computer, weapons and fire control, and threat warning systems.

The purpose of the F-15 Multi-stage Improvement Program (MSIP) was to provide maximum air superiority in a dense hostile environment in the late 1990s and beyond. All total, 427 Eagles received the new avionics upgrades. Along with later model production aircraft, these retrofitted aircraft would provide the Combat Air Forces (CAF) with a total MSIP fleet of 526 aircraft. The MSIP upgraded the capabilities of the F-15 aircraft to included a MIL-STD-1760 aircraft/weapons standard electrical interface bus to provide the digital technology needed to support new and modern weapon systems like AMRAAM. The upgrade also incorporated a MIL-STD-1553 digital command/response time division data bus that would enable onboard systems to communicate and to work with each other. A new central computer with significantly improved processing speed and memory capacity upgraded the F-15 from 70s to 90s technology, adding capacity needed to support new radar and other systems. The original Eagle had less computer capacity than a 1990s car. Some of the work prefaced the addition of the Joint Tactical Information Distribution System, adding space, power, and cooling that would allow the new avionics to run in the harsh environments in which the Eagle operates. The new programmable armament control set (PACS) with a multi-purpose color display (MPCD) for expanded weapons control, monitoring, and release capabilities featured a modern touch screen that allowed the pilot to talk to his weapons. A data transfer module (DTM) set provided pre-programmed information that customized the jet to fly the route the pilot had planned using mission planning computers. An upgrade to the APG-63 Radar for multiple target detection, improved electronic counter-countermeasures (ECCM) characteristics, and non-cooperative target recognition capability enabled the pilot to identify and target enemy aircraft before he was detected or before the enemy could employ his weapons. An upgrade of the advanced medium range air-to-air missile (AMRAAM), that carried up to eight missiles, represented an improvement that complimented the combat-proven AIM-7 Sparrow by giving the pilot capability to engage multiple targets to launch and leave, targeting and destroying enemy fighters before they could pose a threat. The upgraded Radar Warning Receiver (RWR) and an enhanced internal countermeasures set (ICS) on F-15C/D models improved threat detection and self-protection radar jamming capability that allowed pilots to react to threat and to maneuver to break the lock of enemy missiles.

The F-15 initial operational requirement was for a service life of 4,000 hours. Testing completed in 1973 demonstrated that the F-15 could sustain 16,000 hours of flight. Subsequently operational use was more severely stressful than the original design specification. With an average usage of 270 aircraft flight hours per year, by the early 1990s the F-15C fleet was approaching its service-design-life limit of 4,000 flight hours. Following successful airframe structural testing, the F-15C was extended to an 8,000-hour service life limit. An 8,000-hour service limit provides current levels of F-15Cs through 2010. The F-22 program was initially justified on the basis of an 8,000 flight hour life projection for the F-15. This was consistent with the projected lifespan of the most severely stressed F-15Cs, which have averaged 85% of flight hours in stressful air-to-air missions, versus the 48% in the original design specification.

Full-scale fatigue testing between 1988 and 1994 ended with a demonstration of over 7,600 flight hours for the most severely used aircraft, and in excess of 12,000 hours on the remainder of the fleet. A 10,000-hour service limit would provide F-15Cs to 2020, while a 12,000-hour service life extends the F-15Cs to the year 2030. The APG-63 radar, F100-PW-100 engines, and structure upgrades are mandatory. The USAF cannot expect to fly the F-15C to 2014, or beyond, without replacing these subsystems. The total cost of the three retrofits would be under $3 billion. The upgrades would dramatically reduce the 18 percent breakrate prevalent in the mid-1990s, and extend the F-15C service life well beyond 2014.

The F-15E structure is rated at 16,000 flight hours, double the lifetime of earlier F-15s.
Foreign Military Sales

The Eagle has been chosen by three foreign military customers to modernize their air forces. Japan has purchased and produces an air-to-air F-15 known as the F-15J. Israel has bought F-15A, B, and D aircraft from USAF inventories and is currently obtaining an air-to-ground version called the F-15I. Similarly, Saudi Arabia has purchased F-15C and D aircraft and acquired the air-to-ground F-15S.
F-15I Thunder

Israel has bought F-15A, B, and D aircraft from USAF inventories and is currently obtaining an air-to-ground version called the F-15I. The two seat F-15I, known as the Thunder in Israel, incorporates new and unique weapons, avionics, electronic warfare, and communications capabilities that make it one of the most advanced F-15s. The F-15I, like the US Air Force's F-15E Strike Eagle, is a dual-role fighter that combines long-range interdiction with the Eagle's air superiority capabilities. All aircraft are to be configured with either the F100-PW-229 or F110-GE-129 engines by direct commercial sale; Night Vision Goggle compatible cockpits; an Elbit display and sight helmet (DASH) system; conformal fuel tanks; and the capability to employ the AIM-120, AIM-7, AIM-9, and a wide variety of air-to-surface munitions.

F-15 production, which began in 1972, has been extended into 1999 by orders F-151 aircraft for Israel. Israel selected the F-15I in January, 1994 after evaluating a variety of aircraft to meet its defense needs. The government of Israel initially ordered 25 F-15I Thunders, powered by two Pratt & Whitney F100-PW-229 low bypass turbofan engine. This foreign military sale was valued at $1.76 billion dollars. The Israeli Air Force received the first two of 25 F-15I aircraft in January 1998. On 22 September 1998 the US Department of Defense announced the sale to the Government of Israel of 30 F-15I aircraft; 30 AN/APG-70 or AN/APG-63(V)1 radar; and 30 each LANTIRN navigation and targeting pods. Associated support equipment, software development/integration, spares and repair parts, flight test instrumentation, publications and technical documentation, personnel training and training equipment, US Government and contractor technical and logistics personnel services, and other related requirements to ensure full program supportability will also be provided. The estimated cost was $2.5 billion.
F-15S Peace Sun IX

F-15 production has been extended into 1999 by orders for 72 F-15S aircraft for Saudi Arabia. Peace Sun IX is an F-15 Foreign Military Sales production program, with development, to deliver 72 F-15S aircraft including support equipment, spares, and training to the Royal Saudi government. Saudi Arabia has purchased a total of 62 F-15C and D aircraft and later procured the F-15S, which is a two-seater aircraft based on the F-15E airframe, with downgraded avionics, downgraded LANTIRN pods, and a simplified Hughes APG-70 radar without computerised radar mapping. Four F-15S Eagles were delivered in 1995. On 10 November 1999 the last of 72 F-15S aircraft was delivered to Saudi Arabia. In November 1995 Saudi Arabia purchased 556 GBU-15 Guided Bomb Units (including six training units), 48 data link pods, personnel training and training equipment and other related elements of logistics support. The estimated cost is $371 million. Saudi Arabia would use the GBU-15s to enhance the stand off attack capability of the F-15S aircraft.
F-15J Peace Eagle
Japan has purchased and produced a total of 223 air-to-air F-15 known as the F-15J, assembled in Japan from largely indigenously manufactured sub-assemblies and equipment. The Mitsubishi F-15J/DJ Eagle is the principal air superiority fighter operated by the JASDF. These differ from the F-15C/D with the deletion of sensitive ECM, radar warning, and nuclear delivery equipment. The AN/ALQ-135 is replaced by indigenous J/ALQ-8 and the AN/ALR-56 RHAWS is replaced by J/APR-4.

Primary Function Tactical fighter.
Contractor McDonnell Douglas Corp.
Power Plant Two Pratt & Whitney F100-PW-100 turbofan engines with afterburners.
Thrust (C/D models) 25,000 pounds each engine ( 11,250 kilograms).
Length 63 feet, 9 inches (19.43 meters).
Height 18 feet, 8 inches (5.69 meters).
Wingspan 42 feet, 10 inches (13.06 meters)
Speed 1,875 mph (Mach 2.5-plus) at 45,000 ft.
Ceiling 65,000 feet (19,697 meters).
Maximum Takeoff Weight (C/D models) 68,000 pounds (30,600 kilograms).
Range 3,450 miles (3,000 nautical miles) ferry range with conformal fuel tanks and three external fuel tanks.
Armament 1 - M-61A1 20mm multibarrel internal gun, 940 rounds of ammunition
4 - AIM-9L/M Sidewinder and
4 - AIM-7F/M Sparrow missiles, or
combination of AIM-9L/M, AIM-7-F/M and AIM-120 missiles.
F-15C Weapon Loads
7 9 120 88 MM
4 4

4 2 2
2 2 4
4 4
4 900

4 4 4 900

F-15E Weapon Loads

12 CBU-52 (6 with wing tanks)
12 CBU-59 (6 with wing tanks)
12 CBU-71 (6 with wing tanks)
12 CBU-87 (6 with wing tanks)
12 CBU-89 (6 with wing tanks)
20 MK-20 (6 with wing tanks)

65 130 87 89 97 10 12 28 15 JDAM 9 120 MM

4 500


4 500


4 500


4 500


4 500


4 500


4 500


4 500


4 500

4 500

4 4 500

2 6 500
# Systems AN/APG-63 X-band pulsed-Doppler radar [Hughes]
# AN/APG-70 X-band pulsed-Doppler radar [Hughes]
[ on F-15E, F-15C/D, F-15A/B MSIP]
# AN/APX-76 IFF interrogator [Hazeltine]

# AN/ALQ-135(V) internal countermeasures system
# AN/ALQ-128 radar warning [Magnavox] suite
# AN/ALR-56 radar warning receiver (RWR) [Loral]
# AN/ALE-45 chaff/flare dispensers [Tracor]

# AN/AVQ-26 Pave Tack
# AN/AXQ-14 Data Link System
Crew F-15A/C: one. F-15B/D: two.
Unit cost $FY98
[Total Program] $43 million.
Date Deployed July 1972
[for USAF] 360 F-15A/B
408 F-15C
61 F-15D
203 F-15E
Total Inventory 275 F-15A/B
410 F-15C/D
203 F-15E

Approximately 100 F-15s are in storage @ AMARC
Primary Mission Aircraft Inventory 45 F-15A/B Air National Guard Air Defense Force
45 F-15A/B Air National Guard
126 F-15C/D Air Combat Command
90 F-15C/D Pacific Air Forces
36 F-15C/D US Air Forces Europe
342 F-15A/C TOTAL

66 F-15E Air Combat Command
18 F-15E Pacific Air Forces
48 F-15E US Air Forces Europe
132 F-15E TOTAL

Only combat-coded aircraft and not development/ test, attrition reserve, depot maintenance, or training aircraft.
Add a Comment:
No comments have been added yet.

breaking away: piece for Adidas
Add a Comment:
No comments have been added yet.

Sony Ericsson W880i

:+fav: & Comments are welcome:aww:
Add a Comment:
No comments have been added yet.

The General Atomics MQ-1 Predator is an unmanned aerial vehicle (UAV) which the United States Air Force describes as a MALE (medium-altitude, long-endurance) UAV system. It can serve in a reconnaissance role and fire two AGM-114 Hellfire missiles. The aircraft, in use since 1995, has seen combat over Afghanistan, Pakistan, Bosnia, Serbia, Iraq, and Yemen. It is a remote-controlled aircraft.

The MQ-1 Predator is a system, not just an aircraft. The fully operational system consists of four air vehicles (with sensors), a ground control station (GCS), a Predator primary satellite link communication suite, and 55 people. In the over-all U.S. Air Force integrated UAV system the Predator is considered a "Tier II" vehicle.[2]

The Predator system was initially designated the RQ-1 Predator. The "R" is the Department of Defense designation for reconnaissance and the "Q" refers to an unmanned aircraft system.[3] The "1" describes it as being the first of a series of aircraft systems built for unmanned reconnaissance. Pre-production systems were designated as RQ-1A, while the RQ-1B (not to be confused with the RQ-1 Predator B, which became the MQ-9 Reaper) denotes the baseline production configuration. It should be emphasized that these are designations of the system as a unit. The actual aircraft themselves were designated RQ-1K for pre-production models, and RQ-1L for production models.[4] In 2005, the Air Force officially changed the designation to MQ-1 (the "M" designates multi-role) to reflect its growing use as an armed aircraft.[5]

As of 2009[update] the Air Force’s fleet stands at 195 Predators and 28 Reapers.[1]

More than one third of all deployed Predator spy planes have crashed. 55 were lost because of "equipment failure, operator errors or weather". Four of them were shot down in Bosnia, Kosovo and Iraq; 11 were lost in combat situations, such as "running out of fuel while protecting troops under fire.

At Paris Air Show 2007
A Predator flies on a simulated Navy aerial reconnaissance flight off the coast of southern California on Dec. 5, 1995.

The CIA and the Pentagon had each been experimenting with reconnaissance drones since the early 1980s. The CIA preferred small, lightweight, unobtrusive drones, in contrast to the USAF. In the early 1990s the agency became interested in the "Amber", a drone developed by Abraham Karem and his company, Leading Systems Inc.[4]. Karem was the former chief designer for the Israeli Air Force, and had migrated to the United States in the late 1970s. Karem's company had since gone bankrupt and been bought up by a US defense contractor. The CIA secretly bought five drones (now called the "Gnat") from them. Karem agreed to produce a quiet engine for the vehicle, which had until then sounded like "a lawnmower in the sky". The new development became known as the "Predator".[6]

General Atomics Aeronautical Systems was awarded a contract to develop the Predator in January 1994, and the initial Advanced Concept Technology Demonstration (ACTD) phase lasted from January 1994 to June 1996. The aircraft itself was a derivative of the GA Gnat 750 UAV. During the ACTD phase, three systems were purchased from GA, comprising twelve aircraft and three ground control stations.[7]

From April through May, 1995, the Predator ACTD aircraft were flown as a part of the Roving Sands 1995 exercises in the U.S. The exercise operations were successful, and this led to the decision to deploy the system to the Balkans later in the summer of 1995.[7]

Cost for an early production Predator was about $3.2 million USD.[4]

The CIA arranged for Air Force teams trained by the 11th Reconnaissance Squadron at Nellis Air Force Base, Nevada, to fly the agency's Predators. "First in Bosnia and then in Kosovo, CIA officers began to see the first practical returns ..."[8]

By the time of the Afghan campaign, the Air Force had acquired 60 Predators, and lost 20 of them in action. Few if any of the losses were from enemy action, the worst problem apparently being foul weather, particularly icy conditions. Some critics within the Pentagon saw the high loss rate as a sign of poor operational procedures. In response to the losses caused by cold weather flight conditions, a few of the later Predators obtained by the USAF were fitted with deicing systems, along with an uprated turbocharged engine and improved avionics. This improved "Block 1" version was referred to as the "RQ-1B", or the "MQ-1B" if it carried munitions; the corresponding air vehicle designation was "RQ-1L" or "MQ-1L".

[edit] Command and sensor systems

During the campaign in the former Yugoslavia, a Predator's pilot would sit with several payload specialists in a van near the runway of the drone's operating base. (In its Balkan operation, the CIA secretly flew Predators out of Hungary and Albania.) Direct radio signals controlled the drone's takeoff and initial ascent. Then communications shifted to military satellite networks linked to the pilot's van. Pilots experienced a delay of several seconds between tugging their joysticks and the drone's response. But by 2000, improvements in communications systems [perhaps by use of the USAF's JSTARS system] now made it possible, at least in theory, to fly the drone remotely from great distances. It was no longer necessary to use close-up radio signals during the Predator's takeoff and ascent. The entire flight could be controlled by satellite from any command center with the right equipment. The CIA proposed to attempt over Afghanistan the first fully remote Predator flight operations, piloted from the agency's headquarters at Langley.[9]

The Predator air vehicle and sensors are controlled from the ground station via a C-band line-of-sight data link or a Ku-band satellite data link for beyond-line-of-sight operations. During flight operations the crew in the ground control station is a pilot and two sensor operators. The aircraft is equipped with the AN/AAS-52 Multi-spectral Targeting System,[10] a color nose camera (generally used by the pilot for flight control), a variable aperture day-TV camera, and a variable aperture infrared camera (for low light/night). Previously, Predators were equipped with a synthetic aperture radar for looking through smoke, clouds or haze, but lack of use validated its removal to reduce weight. The cameras produce full motion video and the synthetic aperture radar produced still frame radar images. There is sufficient bandwidth on the datalink for two video sources to be used at one time, but only one video source from the sensor ball can be used at any time due to design limitations. Either the daylight variable aperture or the infrared electro-optical sensor may be operated simultaneously with the synthetic aperture radar, if equipped.

All Predators are equipped with a laser designator that allows the pilot to identify targets for other aircraft and even provide the laser-guidance for manned aircraft. This laser is also the designator for the AGM-114 Hellfire that are carried on the MQ-1.

[edit] Deployment methodology
UAV Operators at Balad Camp Anaconda, Iraq, April 20, 2005.

Each Predator air vehicle can be disassembled into six main components and loaded into a container nicknamed "the coffin." This enables all system components and support equipment to be rapidly deployed worldwide. The largest component is the ground control station and it is designed to roll into a C-130 Hercules. The Predator primary satellite link consists of a 6.1 meter (20 ft) satellite dish and associated support equipment. The satellite link provides communications between the ground station and the aircraft when it is beyond line-of-sight and is a link to networks that disseminate secondary intelligence. The RQ-1A system needs 1,500 by 40 meters (5,000 by 125 ft) of hard surface runway with clear line-of-sight to each end from the ground control station to the air vehicles. Initially, all components needed be located on the same airfield.

Currently, the US Air Force uses a concept called "Remote-Split Operations" where the satellite datalink is located in a different location and is connected to the GCS through fiber optic cabling. This allows Predators to be launched and recovered by a small "Launch and Recovery Element" and then handed off to a "Mission Control Element" for the rest of the flight. This allows a smaller number of troops to be deployed to a forward location, and consolidates control of the different flights in one location.

The improvements in the MQ-1B production version include an ARC-210 radio, an APX-100 IFF/SIF with mode 4, a glycol-weeping “wet wings” ice mitigation system, up-graded turbo-charged engine, fuel injection, longer wings, dual alternators as well as other improvements.

On 18 May 2006, the Federal Aviation Administration (FAA) issued a certificate of authorization which will allow the M/RQ-1 and M/RQ-9 aircraft to be used within U.S. civilian airspace to search for survivors of disasters. Requests had been made in 2005 for the aircraft to be used in search and rescue operations following Hurricane Katrina, but because there was no FAA authorization in place at the time, the assets were not used. The Predator's infrared camera with digitally-enhanced zoom has the capability of identifying the heat signature of a human body from an altitude of 3 km (10,000 ft), making the aircraft an ideal search and rescue tool.[11]

The longest declassified Predator flight was 40 hours, 5 minutes.[12]

The total flight time has reached 400 thousand hours as of March 2009.[13].

[edit] Armed version development
MQ-1 Predator, with inert Hellfire missiles, on display at the 2006 Edwards Open House

The Air Force handed the Predator over to the service's Big Safari office after the Kosovo campaign in order to accelerate tests of the UAV in a strike role, fitted with reinforced wings and stores pylons to carry munitions, as well as a laser target designator. This effort led to a series of tests, on 21 February 2001, in which the Predator fired three Hellfire anti-armor missiles, scoring hits on a stationary tank with all three missiles. The scheme was put into service, with the armed Predators given the new designation of MQ-1A. Given that a Predator is very unobtrusive and the Hellfire is supersonic, such a combination gives little warning of attack.[4][14]

In the winter of 2000-2001, after seeing the results of Predator reconnaissance in Afghanistan (see below), Cofer Black, head of the CIA's Counterterrorist Center (CTC), became a "vocal advocate" of arming the Predator with missiles to target Osama bin Laden in the country. He also believed that CIA pressure and practical interest was causing the USAF's armed Predator program to be significantly accelerated. Black, and "Richard", who was in charge of the CTC's Bin Laden Issue Station, continued to press during 2001 for a Predator armed with Hellfire missiles.

Further weapons tests occurred between 22 May and 7 June 2001, with mixed results. While missile accuracy was excellent, there were some problems with missile fuzing ..." In the first week of June, in the Nevada Desert, a Hellfire missile was successfully launched on a replica of bin Laden's Afghanistan Tarnak residence. A missile launched from a Predator exploded inside one of the replica's rooms; it was concluded that any people in the room would have been killed. However, the armed Predator did not go into action before 9/11.[15]

The Air Force has also investigated using the Predator to drop battlefield ground sensors, and to carry and deploy the "Finder" mini-UAV.[4]

[edit] NASA and NPGS unarmed research versions

Two unarmed versions, known as the General Atomics ALTUS were built, ALTUS I for the Naval Postgraduate School and ALTUS II for the NASA ERAST Project in 1997 and 1996, respectively.

[edit] MQ-1C Warrior
Main article: MQ-1C Warrior

The U.S. Army selected the MQ-1C Warrior as the winner of the Extended-Range Multi-Purpose UAV competition August 2005, and the type is due to become operational in 2009.

[edit] Operational history
RQ-1A Predator

The total numbers of Predators in Air Force use as of March 2009 were 195 Predators and 28 Reapers. Predators and Reapers fired missiles 244 times in Iraq and Afghanistan in 2007 and 2008. A report in March 2009 indicated that U.S. Air Force had lost 70 Predators in air crashes during its operational history. Fifty-five were lost to equipment failure, operator error, or weather. Four have been shot down in Bosnia, Kosovo, or Iraq. Eleven more were lost to operational accidents on combat missions.[16]
[edit] Squadrons and operational units

During the initial ACTD phase, the United States Army led the evaluation program, but in April 1996, the Secretary of Defense selected the U.S. Air Force as the operating service for the RQ-1A Predator system. The 11th, 15th, and 17th Reconnaissance Squadrons, Creech Air Force Base, Nevada, and the Air National Guard's 163d Reconnaissance Wing at March Air Reserve Base, California, currently operate the MQ-1 (see below).

In 2005, the U.S. Department of Defense recommended retiring Ellington Field's 147th Fighter Wing's F-16 Falcon fighter jets (a total of 15 aircraft), which was approved by the Base Realignment and Closure committee. They will be replaced with 12 MQ-1 Predator UAVs, and the new unit should be fully equipped and outfitted by 2009.[17] The wing's combat support arm will remain intact. The 272nd Engineering Installation Squadron, an Air National Guard unit currently located off-base, will move into Ellington Field in its place.

U.S. Customs and Border Protection is operating an unknown number of Predators.[18]

[edit] Balkans
A shot down RQ-1 Predator in a museum in Belgrade, Serbia

The first overseas deployment was to the Balkans, from July to November 1995, under the name Nomad Vigil. Operations were based in Gjader, Albania. Several Predators were lost during Nomad Vigil.

* One aircraft (serial 95-3017) was lost on 18 April 1999, following fuel system problems and icing.[19]
* A second aircraft (serial 95-3019) was lost on 13 May, when it was shot down by a Serbian Strela-1M surface-to-air missile over the village of Biba. A Serbian TV crew videotaped this incident.[20]
* A third aircraft (serial number 95-3021) crashed on 20 May near the town of Talinovci, and Serbian news reported that this, too, was the result of anti-aircraft fire.[20][21]

[edit] Afghanistan

In 2000 a joint CIA-Pentagon effort was agreed to locate Osama bin Laden in Afghanistan. Dubbed "Afghan Eyes", it involved a projected 60-day trial run of Predators over the country. The first experimental flight was held on 7 September 2000. White House security chief Richard A. Clarke was impressed by the resulting video footage; he hoped that the drones might eventually be used to target Bin Laden with cruise missiles or armed aircraft. Clarke's enthusiasm was matched by that of Cofer Black, head of the CIA's Counterterrorist Center (CTC), and Charles Allen, in charge of the CIA's intelligence-collection operations. The three men backed an immediate trial run of reconnaissance flights. Ten out of the ensuing 15 Predator missions over Afghanistan were rated successful. On at least two flights, a Predator spotted a tall man in white robes at bin Laden's Tarnak Farm compound outside Kandahar; the figure was subsequently deemed to be "probably bin Laden".[22]

"A large video screen loomed in the middle of the CIA's makeshift flight operations center. Air Force drone pilots and CIA officers from the Counterterrorist Center and the CTC's bin Laden unit huddled in the darkened room in the wooded Langley campus from midnight to dawn". But by mid-October, deteriorating weather conditions made it difficult for the Predator to fly from its base in Uzbekistan, and the run of flights was suspended.[23]

It was hoped to resume flights in spring 2001, but debates about the use of an armed Predator (see above) delayed a restart. Only on 4 September 2001 (after the Bush cabinet approved a Qaeda/Taliban plan) did CIA chief Tenet order the agency to resume reconnaissance flights. The Predators were now weapons-capable, but didn't carry missiles because the host country (presumably Uzbekistan) hadn't granted permission.

Subsequent to 9/11, approval was quickly granted to ship the missiles, and the Predator aircraft and missiles reached their overseas location on 16 September 2001. The first mission was flown over Kabul and Kandahar on 18 September without carrying weapons. Subsequent host nation approval was granted on 7 October and the first armed mission was flown on the same day.[24]

* On 4 February 2002, an armed Predator attacked a convoy of sport utility vehicles, killing a suspected al Qaeda leader. The intelligence community initially expressed doubt that he was Osama bin Laden.

* On 4 March 2002, a CIA-operated Predator fired a Hellfire missile into a reinforced al Qaeda machine gun bunker that had pinned down an Army Ranger team whose CH-47 Chinook had crashed on the top of Takur Ghar Mountain in Afghanistan. Previous attempts by flights of F-15 and F-16 aircraft were unable to destroy the bunker. This action took place during what has become known as the "Battle of Robert's Ridge", a part of Operation Anaconda. This appears to be the first use of such a weapon in a close air support role.[25]

[edit] Pakistan
Main article: Drone attacks in Pakistan by the United States

Since at least 2004, the US Central Intelligence Agency has allegedly been operating the drones out of Shamsi airfield in Pakistan to attack militants in Pakistan's Federally Administered Tribal Areas.[26] [27]

* On 13 May 2005, Haitham al-Yemeni, an al Qaeda explosives expert from Yemen, was killed in a village in northwest Pakistan near the Afghanistan border by a CIA-operated MQ-1 Predator aircraft firing a Hellfire missile.[28]
* On 3 December 2005, a US Predator UAV reportedly killed high-level Al Qaeda member Chief Abu Hamza Rabia in his sleep in Haisori, Pakistan. Four others were also killed.[29]
* On 13 January 2006, several US Predators conducted an airstrike on Damadola village in Pakistan where al Qaeda's second-in-command Ayman al-Zawahiri was reportedly located. CIA Predators reportedly fired 10 missiles killing 18 civilians, including five women and five children. According to Pakistani authorities, the U.S. strike was based on faulty intelligence and al-Zawahiri was not present in the village. Pakistani officials nevertheless claimed that Midhat Mursi (Abu Khabab al-Masri) — al Qaeda's master bomb maker and chemical weapons expert, Khalid Habib — the al Qaeda operations chief for Pakistan and Afghanistan, and Abdul Rehman al Magrabi — a senior operations commander for al Qaeda were all killed in the Damadola attack.[30][31] U.S. and Pakistani officials now say that none of those al Qaeda leaders perished in the strike and that only local villagers were killed.[32]
* On 30 October 2006, the Bajaur airstrike was conducted, targeting an alleged militant training camp and targeting al Qaeda's second-in-command, Ayman al-Zawahiri. The strike hit a religious school where militants were believed to be present. Eyewitness reports said that two explosions were heard following a missile being fired from an MQ-1 Predator. Pakistani intelligence officials have told western media that Predators were used in the strike, which utilized Hellfire missiles. Although Zawahiri does not appear to have been caught in the strike, Pakistani officials have stated that between two and five senior al Qaeda fighters, including the mastermind of the airliners plot in the UK, were killed in the raid.[33] While some reports state that the school was a religious training center, Pakistani authorities, including President Musharraf, have stated that the school provided military training to al Qaeda militants. Casualty figures range from 80 to 85 people killed.[34]
* On 29 January 2008 an MQ-1B killed Abu Laith al-Libi in Mir Ali.
* Al-Qaeda chief dies in missile airstrike The Guardian 1 June 2008 see Damadola airstrike
* US Releases Video of Clash Along Pakistan VOA News 12 June 2008
* Pakistan Angry as Strike by U.S. Kills 11 Soldiers NY Times 12 June 2008
* U.S. Military Releases Video Footage of Airstrike in Pakistan Washington Post 12 June 2008
* CIA given green light to bomb Osama bin Laden [link] 2 July 2008
* First confrontation with Pakistani jets. An MQ-1 had to return to base after Pakistani jets were scrambled.[35]
* A UAV crash landed in the area of Angoor Adda, which has been an area of constant American activity. Local tribesmen have picked up the wreckage and handed over the security forces.[36] Pentagon has denied this.
* 'US drone' in fatal Pakistan raid AlJazeera 14 February 2009

[edit] Yemen
Main article: CIA activities in Yemen

* On 3 November 2002, a CIA Predator (being flown by an Air Force pilot from a French military base, Camp Lemonier, in Djibouti) was again used in a military strike. A Hellfire missile was fired at a car in Yemen, killing Qaed Senyan al-Harthi, an al-Qaeda leader thought to be responsible for the USS Cole bombing. It was the first direct US strike in the War on Terrorism outside Afghanistan.[28][37]
* Steve Scher on Weekday – February 23, 2007 KUOW-FM interviews James Bamford on the National Security Agency (Note: minutes 21–24 of 54 minute audio)

[edit] Iraq
An MQ-1B Predator unmanned aircraft from the 361st Expeditionary Reconnaissance Squadron takes off July 9 from Ali Base, Iraq, in support of Operation Iraqi Freedom.

* An Iraqi MiG-25 shot down a Predator performing reconnaissance over the no fly zone in Iraq on 23 December 2002, after the Predator fired a missile at it. This was the first time in history a conventional aircraft and a drone had engaged in combat. Predators had been armed with AIM-92 Stinger air-to-air missiles, and were being used to "bait" Iraqi fighter planes, then run. In this incident, the Predator didn't run, but instead fired one of the Stingers. The Stinger's heat-seeker became "distracted" by the MiG's missile and so missed the MiG, and the Predator was destroyed.[38][39]
* During the initial phases of the 2003 U.S. invasion of Iraq, a number of older Predators were stripped down and used as decoys to entice Iraqi air defenses to expose themselves by firing.[4][38]
* From July 2005 to June 2006, the 15th Reconnaissance Squadron participated in more than 242 separate raids, engaged 132 troops in contact-force protection actions, fired 59 Hellfire missiles; surveyed 18,490 targets, escorted four convoys, and flew 2,073 sorties for more than 33,833 flying hours.[40]

[edit] Others

Since the end of 2004 it is also used by the Italian Air Force and since 2006 by the Royal Air Force. Two civil-registered unarmed MQ-1s have been operated by the Office of the National Security Advisor in the Philippines since 2006.[citation needed]

[edit] Operators


* Aeronautica Militare
o 32º Stormo — Foggia, Amendola Air Force Base
+ 28º Gruppo

United Kingdom

* Royal Air Force
o No. 1115 Flight RAF
o No. 39 Squadron RAF;[41]


* Turkish Air Force;[42] The Turkish Air Force has on order 6 MQ-1 Predators via the USA's Foreign Military Sales mechanism.

United States

* United States Air Force
o Air Combat Command
+ 432d Air Expeditionary Wing—Creech Air Force Base, Nevada
# 11th Reconnaissance Squadron
# 15th Reconnaissance Squadron
# 17th Reconnaissance Squadron
+ 53d Wing—Eglin AFB, Florida
# 556th Test and Evaluation Squadron—Creech Air Force Base, Nevada
o Air Force Special Operations Command
+ 1st Special Operations Wing
# 3d Special Operations Squadron—Creech Air Force Base, Nevada
o Air National Guard
+ Texas Air National Guard
# 147th Reconnaissance Wing—Ellington Field
* 111th Reconnaissance Squadron
+ California Air National Guard
# 163d Reconnaissance Wing—March Joint Air Reserve Base
* 196th Reconnaissance Squadron
* Central Intelligence Agency
* U.S. Customs and Border Protection

[edit] Specifications

General characteristics

* Crew: 2 (one pilot and one sensor operator)
* Length: 27 ft (8.22 m)
* Wingspan: 48.7 ft (14.8 m (dependent on block of aircraft))
* Height: 6.9 ft (2.1 m)
* Wing area: 123.3 sq ft[43] (11.5 m²;)
* Empty weight: 1,130 lb[44] (512 kg)
* Loaded weight: 2,250 lb (1,020 kg)
* Max takeoff weight: 2,250 lb[44] (1,020 kg)
* Powerplant: 1× Rotax 914F turbocharged Four-cylinder engine, 115 hp[44] (86 kW)


* Maximum speed: 135 mph (117 knots, 217 km/h)
* Cruise speed: 81–103 mph (70–90 knots, 130–165 km/h)
* Stall speed: 62 mph (54 knots (dependent on weight of aircraft), 100 km/h)
* Range: >2,000 nm[45] (3,704 km, 2,302 miles)
* Service ceiling: 25,000 ft [44] (7,620 m)


2 hard points

* 2 × AGM-114 Hellfire (MQ-1B)
* 2 × AIM-92 Stinger (unknown number) (MQ-1B)
Add a Comment:
No comments have been added yet.