Shop Mobile More Submit  Join Login

Similar Deviations
Well.. My first submission here =)

Kind of an easy work. I just changed the original illustration a lot by working with layers and using much different kinds of effects. Every (!!!) aspect of the whole pictures is wanted. So there are no "misstakes" in fact.

Comments, rates and feedback are always welcome. IŽll try to get better and make more changes in my next pictures, too =)

Credits: Bungie of course for their awesome work. Hope itŽs okay to use your picture guys. Maybe youŽll read this =D
Add a Comment:
No comments have been added yet.

F-15 Eagle

The F-15 Eagle is an all-weather, extremely maneuverable, tactical fighter designed to gain and maintain air superiority in aerial combat. The Eagle's air superiority is achieved through a mixture of maneuverability and acceleration, range, weapons and avionics. The F-15 has electronic systems and weaponry to detect, acquire, track and attack enemy aircraft while operating in friendly or enemy-controlled airspace. Its weapons and flight control systems are designed so one person can safely and effectively perform air-to-air combat. It can penetrate enemy defense and outperform and outfight current or projected enemy aircraft.

The F-15's superior maneuverability and acceleration are achieved through high engine thrust-to-weight ratio and low wing loading. Low wing-loading (the ratio of aircraft weight to its wing area) is a vital factor in maneuverability and, combined with the high thrust-to-weight ratio, enables the aircraft to turn tightly without losing airspeed.

A multimission avionics system sets the F-15 apart from other fighter aircraft. It includes a head-up display, advanced radar, inertial navigation system, flight instruments, UHF communications, tactical navigation system and instrument landing system. It also has an internally mounted, tactical electronic-warfare system, "identification friend or foe" system, electronic countermeasures set and a central digital computer.

Through an on-going multistage improvement program the F-15 is receiving extensive upgrade involving the installation or modification of new and existing avionics equipment to enhance the tactical capabilities of the F-15.

The head-up display projects on the windscreen all essential flight information gathered by the integrated avionics system. This display, visible in any light condition, provides the pilot information necessary to track and destroy an enemy aircraft without having to look down at cockpit instruments.

The F-15's versatile pulse-Doppler radar system can look up at high-flying targets and down at low-flying targets without being confused by ground clutter. It can detect and track aircraft and small high-speed targets at distances beyond visual range down to close range, and at altitudes down to tree-top level. The radar feeds target information into the central computer for effective weapons delivery. For close-in dog fights, the radar automatically acquires enemy aircraft, and this information is projected on the head-up display.

The APG-63 radar was developed over 20 years ago and has an average mean time between failure less than 15 hours. APG-63 LRUs have become increasingly difficult to support both in the field and at the depot. First, individual parts have become increasingly unavailable from any source; incorporating newer technology parts often entails module redesign and fails to address the root cause. Second, continuing reliability deterioration impacts both sustainment, particularly during deployment, as well as ACC’s ability to implement two-level maintenance. In addition, the APG-63 radar has virtually no remaining processing and memory capacity to accommodate software upgrades to counter evolving threats. The APG-63(V)1 radar has been designed for improved reliability and maintainability to address user requirements. The radar incorporates components designed for improved reliability and lower failure rates and enhanced diagnostics for improved fault detection and fault isolation. Along with other design features, these should improve radar reliability to 120 hours MTBM, an order of magnitude better than the existing APG-63.

An inertial navigation system enables the Eagle to navigate anywhere in the world. It gives aircraft position at all times as well as pitch, roll, heading, acceleration and speed information.

The F-15's electronic warfare system provides both threat warning and automatic countermeasures against selected threats. The "identification friend or foe" system informs the pilot if an aircraft seen visually or on radar is friendly. It also informs U.S. or allied ground stations and other suitably equipped aircraft that the F-15 is a friendly aircraft.

The Fiber Optic Towed Decoy (FOTD) provides aircraft protection against modern radar-guided missiles to supplement traditional radar jamming equipment. The device is towed at varying distances behind the aircraft while transmitting a signal like that of a threat radar. The missile will detect and lock onto the decoy rather than on the aircraft. This is achieved by making the decoy’s radiated signal stronger than that of the aircraft.

A variety of air-to-air weaponry can be carried by the F-15. An automated weapon system enables the pilot to perform aerial combat safely and effectively, using the head-up display and the avionics and weapons controls located on the engine throttles or control stick. When the pilot changes from one weapon system to another, visual guidance for the required weapon automatically appears on the head-up display.

The Eagle can be armed with combinations of four different air-to-air weapons: AIM-7F/M Sparrow missiles or AIM-120 Advanced Medium Range Air-to-Air Missiles on its lower fuselage corners, AIM-9L/M Sidewinder or AIM-120 missiles on two pylons under the wings, and an internal 20mm Gatling gun (with 940 rounds of ammunition) in the right wing root.

The current AIM-9 missile does not have the capabilities demonstrated by foreign technologies, giving the F-15 a distinct disadvantage during IR dogfight scenarios. AIM-9X integration will once again put the F-15 in the air superiority position in all arenas. The F-15/AIM-9X weapon system is to consist of F-15 carriage of the AIM-9X missile on a LAU-128 Air-to-Air (A/A) launcher from existing AIM-9 certified stations. The AIM-9X will be an upgrade to the AIM-9L/M, incorporating increased missile maneuverability and allowing a high off-boresight targeting capability.

Low-drag, conformal fuel tanks were especially developed for the F-15C and D models. Conformal fuel tanks can be attached to the sides of the engine air intake trunks under each wing and are designed to the same load factors and airspeed limits as the basic aircraft. Each conformal fuel tank contains about 114 cubic feet of usable space. These tanks reduce the need for in-flight refueling on global missions and increase time in the combat area. All external stations for munitions remain available with the tanks in use. AIM-7F/M Sparrow and AIM-120 missiles, moreover, can be attached to the corners of the conformal fuel tanks.

The F-15 Eagle began its life in the mid 1960s as the Fighter Experimental (FX) concept. Using lessons learned in Vietnam, the USAF sought to develop and procure a new, dedicated air superiority fighter. Such an aircraft was desperately needed, as no USAF aircraft design solely conceived as an air superiority fighter had become reality since the F-86 Sabre. The intervening twenty years saw a number of aircraft performing the air-to-air role as a small part of their overall mission, such as the primarily air-to-ground F-4 Phantom and the F-102, F-104 and F-106 interceptor designs. The result of the FX study was a requirement for a fighter design combining unparalleled maneuverability with state-of-the-art avionics and weaponry. An industry-wide competition ended on December 23, 1969 when McDonnell Douglas was awarded the contract for the F-15.

* The first F-15A flight was made on 27 July 1972, culminating one of the most successful aircraft development and procurement programs in Air Force history. After an accident-free test and evaluation period, the first aircraft was delivered to the Air Force on Novermber 14, 1974. In January 1976, the first Eagle destined for a combat squadron was delivered to the 1st Tactical Fighter Wing at Langley Air Force Base, Va. Three hundred and sixty-five F-15As were built before production of the F-15C began in 1978. In January 1982, the 48th Fighter-Interceptor Squadron at Langley Air Force Base became the first Air Force air defense squadron to transition to the F-15. After twenty years of service, the F-15A has recently been reassigned from active duty Air Force fighter squadrons to Air National Guard units. The F-15A is flown by Air National Guard squadrons in the states of Oregon, Missouri, Georgia, Louisiana, Hawaii, and Massachussets.
* The first flight of the two-seat F-15B (formerly TF-15A) trainer was made in July 1973. The first F-15B Eagle was delivered in November 1974 to the 58th Tactical Training Wing, Luke Air Force Base, Ariz., where pilot training was accomplished in both F-15A and B aircraft. The F-15B incorporates a tandem seating configuration, with a second crewmember position aft of the pilot's seat. The primary purpose of the F-15B is aircrew training, with an instructor pilot occupying the rear seat while an upgrading pilot mans the front seat controls. The rear seat pilot has a full set of flight controls and can fly the aircraft throughout the envelope, including takeoff and landing. Even though space is sacrificed to accomodate the second crew member, the F-15B retains the same warfighting capability as the F-15A. In keeping with the trainer concept, however, the rear seat is not equipped with controls for the combat avionics and weaponry. In fact, the rear seat is not a mandatory crew position, and F-15Bs are often flown with empty rear cockpits.
* The F-15C is an improved version of the original F-15A single-seat air superiority fighter. Additions incorporated in the F-15C include upgrades to avionics as well as increased internal fuel capacity and a higher allowable gross takeoff weight. The single-seat F-15C and two-seat F-15D models entered the Air Force inventory beginning in 1979. Kadena Air Base, Japan, received the first F-15C in September 1979. These new models have Production Eagle Package (PEP 2000) improvements, including 2,000 pounds (900 kilograms) of additional internal fuel, provision for carrying exterior conformal fuel tanks and increased maximum takeoff weight of up to 68,000 pounds (30,600 kilograms). Externally, the differences between the F-15A and F-15C are so slight as to make identification difficult; the only reliable indicator is the aircraft serial number. All F-15As have tail numbers starting with 73- through 77-, while F-15Cs have tail numbers beginning with 78- through 86-. The F-15C is the Air Force's primary air superiority fighter, serving with active duty units at Langley AFB, VA, Eglin AFB, FL, Mountain Home AFB, ID, Elmendorf AFB, AK, Tyndall AFB, FL, Nellis AFB, NV, Spangdahlem AB, Germany, Lakenheath AB, England and Kadena AB, Okinawa. The operational F-15C force structure is approximately 300 aircraft assigned to operational units. In the mid-1990s the F-15C experienced declining reliability indicators, primarily from three subsystems: radar, engines, and secondary structures. A complete retrofit of all three subsystems could be done for less than $3 billion.
* The F-15D is a two-seat variant of the single-place F-15C. The primary purpose of the F-15D is aircrew training, with an instructor pilot occupying the rear seat while an upgrading pilot mans the front seat controls.

F-15C's, D's and E's were deployed to the Persian Gulf in 1991 in support of Operation Desert Storm where they proved their superior combat capability with a confirmed 26:0 kill ratio.

The F-15C has an air combat victory ratio of 95-0 making it one of the most effective air superiority aircraft ever developed. The US Air Force claims the F-15C is in several respects inferior to, or at best equal to, the MiG-29, Su-27, Su-35/37, Rafale, and EF-2000, which are variously superior in acceleration, maneuverability, engine thrust, rate of climb, avionics, firepower, radar signature, or range. Although the F-15C and Su-27P series are similar in many categories, the Su-27 can outperform the F-15C at both long and short ranges. In long-range encounters, with its superiorr radar the Su-27 can launch a missile before the F-15C does, so from a purely kinematic standpoint, the Russian fighters outperform the F-15C in the beyond-visual-range fight. The Su-35 phased array radar is superior to the APG-63 Doppler radar in both detection range and tracking capabilities. Additionally, the Su-35 propulsion system increases the aircraft’s maneuverability with thrust vectoring nozzles. Simulations conducted by British Aerospace and the British Defense Research Agency compared the effectiveness of the F-15C, Rafale, EF-2000, and F-22 against the Russian Su-35 armed with active radar missiles similar to the AIM-120 Advanced Medium Range Air-to-Air Missile (AMRAAM). The Rafale achieved a 1:1 kill ratio (1 Su-35 destroyed for each Rafale lost). The EF-2000 kill ratio was 4.5:1 while the F-22 achieved a ratio of 10:1. In stark contrast was the F-15C, losing 1.3 Eagles for each Su-35 destroyed.
F-15E Strike Eagle

Although the slogan of the F-15's original design team was "Not a pound for air-to-ground," the F-15 has long been recognized as having superior potential in the ground attack role. In 1987 this potential was realized in the form of the F-15E Strike Eagle. The mission of the Strike Eagle is as succinct as that of its air-to-air cousin: to put bombs on target. The F-15E is especially configured for the deep strike mission, venturing far behind enemy lines to attack high value targets with a variety of munitions. The Strike Eagle accomplishes this mission by expanding on the capabilities of the air superiority F-15, adding a rear seat WSO (Weapon Systems Operator) crewmember and incorporating an entirely new suite of air-to-ground avionics.

The F-15E is a two seat, two engine dual role fighter capable of speeds up to MACH 2.5. The F-15E performs day and night all weather air-to-air and air-to-ground missions including strategic strike, interdiction, OCA and DCA. Although primarily a deep interdiction platform, the F-15E can also perform CAS and Escort missions. Strike Eagles are equipped with LANTIRN, enhancing night PGM delivery capability. The F-15E outbord and inboard wing stations and the centerline can be load with various armament. The outboard wing hardpoint are unable to carry heavy loads and are assign for ECM pods. The other hardpoints can be employed for various loads but with the use of multiple ejection racks (MERs). Each MER can hold six Mk-82 bombs or "Snakeye" retarded bombs, or six Mk 20 "Rockeye" dispensers, four CBU-52B, CBU- 58B, or CBU-71B dispensers, a single Mk-84 (907 kg) bomb F- 15E can carry also "smart" weapons, CBU-10 laser quided bomb based on the Mk 84 bomb, CBU-12, CBU-15, or another, laser, electro-optical, or infra-red guided bomb (including AGM-G5 "Marerick" air-to-ground) missiles.

Conformal Fuel Tanks were introduced with the F-15C in order to extend the range of the aircraft. The CFTs are carried in pairs and fit closely to the side of the aircraft, with one CFT underneath each wing. By designing the CFT to minimize the effect on aircraft aerodynamics, much lower drag results than if a similar amount of fuel is carried in conventional external fuel tanks. This lower drag translate directly into longer aircraft ranges, a particularly desirable characteristic of a deep strike fighter like the F-15E. As with any system, the use of CFTs on F-15s involves some compromise. The weight and drag of the CFTs (even when empty) degrades aircraft performance when compared to external fuel tanks, which can be jettisoned when needed (CFTs are not jettisonable and can only be downloaded by maintenance crews). As a result, CFTs are typically used in situations where increased range offsets any performance drawbacks. In the case of the F-15E, CFTs allow air-to-ground munitions to be loaded on stations which would otherwise carry external fuel tanks. In general, CFT usage is the norm for F15Es and the exception for F-15C/D's.

The F-15E Strike Eagle’s tactical electronic warfare system [TEWS] is an integrated countermeasures system. Radar, radar jammer, warning receiver and chaff/flare dispenser all work together to detect, identify and counter threats posed by an enemy. For example, if the warning receiver detects a threat before the radar jammer, the warning receiver will inform the jammer of the threat. A Strike Eagle’s TEWS can jam radar systems operating in high frequencies, such as radar used by short-range surface-to-air missiles, antiaircraft artillery and airborne threats. Current improvements to TEWS will enhance the aircraft’s ability to jam enemy radar systems. The addition of new hardware and software, known as Band 1.5, will round out the TEWS capability by jamming threats in mid-to-low frequencies, such as long-range radar systems. The equipment is expected to go into full production sometime in late 1999.

The Defense Department plans to sustain production of the F-15E for at least two more years, purchasing three aircraft in both FY 1998 and FY 1999. Without FY 1998 procurement, the F-15 production line would begin to close in the absence of new foreign sales. These six additional aircraft, together with the six aircraft approved by Congress in FY 1997, will sustain the present 132-plane combat force structure until about FY 2016. Under current plans by 2030, the last F-15C/D models will have been phased out of the inventory and replaced by the F-22.
Service Life

Designed in the 1960s and built in the 1970s, the F-15A - D aircraft has now been in service for over twenty years. While the Eagle's aerodynamics and maneuverability are still on a par with newer aircraft, quantum leaps in integrated circuit technology have made the original F-15 avionics suite obsolete. The objective of the Multi-Stage Improvement Program (MSIP) was to set the Eagle in step with today's vastly improved information processing systems. Some F-15C/D aircraft (tail numbers 84-001 and higher) came off the assembly line with MSIP in place. All F-15A/B/C/D aircraft produced before 84-001 will receive the MSIP retrofit at the F-15 depot. Improvements incorporated via MSIP vary between F-15A/B and F-15C/D aircraft; the C/D MSIP has been completed. However, all air-to-air Eagles gain improved radar, central computer, weapons and fire control, and threat warning systems.

The purpose of the F-15 Multi-stage Improvement Program (MSIP) was to provide maximum air superiority in a dense hostile environment in the late 1990s and beyond. All total, 427 Eagles received the new avionics upgrades. Along with later model production aircraft, these retrofitted aircraft would provide the Combat Air Forces (CAF) with a total MSIP fleet of 526 aircraft. The MSIP upgraded the capabilities of the F-15 aircraft to included a MIL-STD-1760 aircraft/weapons standard electrical interface bus to provide the digital technology needed to support new and modern weapon systems like AMRAAM. The upgrade also incorporated a MIL-STD-1553 digital command/response time division data bus that would enable onboard systems to communicate and to work with each other. A new central computer with significantly improved processing speed and memory capacity upgraded the F-15 from 70s to 90s technology, adding capacity needed to support new radar and other systems. The original Eagle had less computer capacity than a 1990s car. Some of the work prefaced the addition of the Joint Tactical Information Distribution System, adding space, power, and cooling that would allow the new avionics to run in the harsh environments in which the Eagle operates. The new programmable armament control set (PACS) with a multi-purpose color display (MPCD) for expanded weapons control, monitoring, and release capabilities featured a modern touch screen that allowed the pilot to talk to his weapons. A data transfer module (DTM) set provided pre-programmed information that customized the jet to fly the route the pilot had planned using mission planning computers. An upgrade to the APG-63 Radar for multiple target detection, improved electronic counter-countermeasures (ECCM) characteristics, and non-cooperative target recognition capability enabled the pilot to identify and target enemy aircraft before he was detected or before the enemy could employ his weapons. An upgrade of the advanced medium range air-to-air missile (AMRAAM), that carried up to eight missiles, represented an improvement that complimented the combat-proven AIM-7 Sparrow by giving the pilot capability to engage multiple targets to launch and leave, targeting and destroying enemy fighters before they could pose a threat. The upgraded Radar Warning Receiver (RWR) and an enhanced internal countermeasures set (ICS) on F-15C/D models improved threat detection and self-protection radar jamming capability that allowed pilots to react to threat and to maneuver to break the lock of enemy missiles.

The F-15 initial operational requirement was for a service life of 4,000 hours. Testing completed in 1973 demonstrated that the F-15 could sustain 16,000 hours of flight. Subsequently operational use was more severely stressful than the original design specification. With an average usage of 270 aircraft flight hours per year, by the early 1990s the F-15C fleet was approaching its service-design-life limit of 4,000 flight hours. Following successful airframe structural testing, the F-15C was extended to an 8,000-hour service life limit. An 8,000-hour service limit provides current levels of F-15Cs through 2010. The F-22 program was initially justified on the basis of an 8,000 flight hour life projection for the F-15. This was consistent with the projected lifespan of the most severely stressed F-15Cs, which have averaged 85% of flight hours in stressful air-to-air missions, versus the 48% in the original design specification.

Full-scale fatigue testing between 1988 and 1994 ended with a demonstration of over 7,600 flight hours for the most severely used aircraft, and in excess of 12,000 hours on the remainder of the fleet. A 10,000-hour service limit would provide F-15Cs to 2020, while a 12,000-hour service life extends the F-15Cs to the year 2030. The APG-63 radar, F100-PW-100 engines, and structure upgrades are mandatory. The USAF cannot expect to fly the F-15C to 2014, or beyond, without replacing these subsystems. The total cost of the three retrofits would be under $3 billion. The upgrades would dramatically reduce the 18 percent breakrate prevalent in the mid-1990s, and extend the F-15C service life well beyond 2014.

The F-15E structure is rated at 16,000 flight hours, double the lifetime of earlier F-15s.
Foreign Military Sales

The Eagle has been chosen by three foreign military customers to modernize their air forces. Japan has purchased and produces an air-to-air F-15 known as the F-15J. Israel has bought F-15A, B, and D aircraft from USAF inventories and is currently obtaining an air-to-ground version called the F-15I. Similarly, Saudi Arabia has purchased F-15C and D aircraft and acquired the air-to-ground F-15S.
F-15I Thunder

Israel has bought F-15A, B, and D aircraft from USAF inventories and is currently obtaining an air-to-ground version called the F-15I. The two seat F-15I, known as the Thunder in Israel, incorporates new and unique weapons, avionics, electronic warfare, and communications capabilities that make it one of the most advanced F-15s. The F-15I, like the US Air Force's F-15E Strike Eagle, is a dual-role fighter that combines long-range interdiction with the Eagle's air superiority capabilities. All aircraft are to be configured with either the F100-PW-229 or F110-GE-129 engines by direct commercial sale; Night Vision Goggle compatible cockpits; an Elbit display and sight helmet (DASH) system; conformal fuel tanks; and the capability to employ the AIM-120, AIM-7, AIM-9, and a wide variety of air-to-surface munitions.

F-15 production, which began in 1972, has been extended into 1999 by orders F-151 aircraft for Israel. Israel selected the F-15I in January, 1994 after evaluating a variety of aircraft to meet its defense needs. The government of Israel initially ordered 25 F-15I Thunders, powered by two Pratt & Whitney F100-PW-229 low bypass turbofan engine. This foreign military sale was valued at $1.76 billion dollars. The Israeli Air Force received the first two of 25 F-15I aircraft in January 1998. On 22 September 1998 the US Department of Defense announced the sale to the Government of Israel of 30 F-15I aircraft; 30 AN/APG-70 or AN/APG-63(V)1 radar; and 30 each LANTIRN navigation and targeting pods. Associated support equipment, software development/integration, spares and repair parts, flight test instrumentation, publications and technical documentation, personnel training and training equipment, US Government and contractor technical and logistics personnel services, and other related requirements to ensure full program supportability will also be provided. The estimated cost was $2.5 billion.
F-15S Peace Sun IX

F-15 production has been extended into 1999 by orders for 72 F-15S aircraft for Saudi Arabia. Peace Sun IX is an F-15 Foreign Military Sales production program, with development, to deliver 72 F-15S aircraft including support equipment, spares, and training to the Royal Saudi government. Saudi Arabia has purchased a total of 62 F-15C and D aircraft and later procured the F-15S, which is a two-seater aircraft based on the F-15E airframe, with downgraded avionics, downgraded LANTIRN pods, and a simplified Hughes APG-70 radar without computerised radar mapping. Four F-15S Eagles were delivered in 1995. On 10 November 1999 the last of 72 F-15S aircraft was delivered to Saudi Arabia. In November 1995 Saudi Arabia purchased 556 GBU-15 Guided Bomb Units (including six training units), 48 data link pods, personnel training and training equipment and other related elements of logistics support. The estimated cost is $371 million. Saudi Arabia would use the GBU-15s to enhance the stand off attack capability of the F-15S aircraft.
F-15J Peace Eagle
Japan has purchased and produced a total of 223 air-to-air F-15 known as the F-15J, assembled in Japan from largely indigenously manufactured sub-assemblies and equipment. The Mitsubishi F-15J/DJ Eagle is the principal air superiority fighter operated by the JASDF. These differ from the F-15C/D with the deletion of sensitive ECM, radar warning, and nuclear delivery equipment. The AN/ALQ-135 is replaced by indigenous J/ALQ-8 and the AN/ALR-56 RHAWS is replaced by J/APR-4.

Primary Function Tactical fighter.
Contractor McDonnell Douglas Corp.
Power Plant Two Pratt & Whitney F100-PW-100 turbofan engines with afterburners.
Thrust (C/D models) 25,000 pounds each engine ( 11,250 kilograms).
Length 63 feet, 9 inches (19.43 meters).
Height 18 feet, 8 inches (5.69 meters).
Wingspan 42 feet, 10 inches (13.06 meters)
Speed 1,875 mph (Mach 2.5-plus) at 45,000 ft.
Ceiling 65,000 feet (19,697 meters).
Maximum Takeoff Weight (C/D models) 68,000 pounds (30,600 kilograms).
Range 3,450 miles (3,000 nautical miles) ferry range with conformal fuel tanks and three external fuel tanks.
Armament 1 - M-61A1 20mm multibarrel internal gun, 940 rounds of ammunition
4 - AIM-9L/M Sidewinder and
4 - AIM-7F/M Sparrow missiles, or
combination of AIM-9L/M, AIM-7-F/M and AIM-120 missiles.
F-15C Weapon Loads
7 9 120 88 MM
4 4

4 2 2
2 2 4
4 4
4 900

4 4 4 900

F-15E Weapon Loads

12 CBU-52 (6 with wing tanks)
12 CBU-59 (6 with wing tanks)
12 CBU-71 (6 with wing tanks)
12 CBU-87 (6 with wing tanks)
12 CBU-89 (6 with wing tanks)
20 MK-20 (6 with wing tanks)

65 130 87 89 97 10 12 28 15 JDAM 9 120 MM

4 500


4 500


4 500


4 500


4 500


4 500


4 500


4 500


4 500

4 500

4 4 500

2 6 500
# Systems AN/APG-63 X-band pulsed-Doppler radar [Hughes]
# AN/APG-70 X-band pulsed-Doppler radar [Hughes]
[ on F-15E, F-15C/D, F-15A/B MSIP]
# AN/APX-76 IFF interrogator [Hazeltine]

# AN/ALQ-135(V) internal countermeasures system
# AN/ALQ-128 radar warning [Magnavox] suite
# AN/ALR-56 radar warning receiver (RWR) [Loral]
# AN/ALE-45 chaff/flare dispensers [Tracor]

# AN/AVQ-26 Pave Tack
# AN/AXQ-14 Data Link System
Crew F-15A/C: one. F-15B/D: two.
Unit cost $FY98
[Total Program] $43 million.
Date Deployed July 1972
[for USAF] 360 F-15A/B
408 F-15C
61 F-15D
203 F-15E
Total Inventory 275 F-15A/B
410 F-15C/D
203 F-15E

Approximately 100 F-15s are in storage @ AMARC
Primary Mission Aircraft Inventory 45 F-15A/B Air National Guard Air Defense Force
45 F-15A/B Air National Guard
126 F-15C/D Air Combat Command
90 F-15C/D Pacific Air Forces
36 F-15C/D US Air Forces Europe
342 F-15A/C TOTAL

66 F-15E Air Combat Command
18 F-15E Pacific Air Forces
48 F-15E US Air Forces Europe
132 F-15E TOTAL

Only combat-coded aircraft and not development/ test, attrition reserve, depot maintenance, or training aircraft.
Add a Comment:
No comments have been added yet.

The General Atomics MQ-1 Predator is an unmanned aerial vehicle (UAV) which the United States Air Force describes as a MALE (medium-altitude, long-endurance) UAV system. It can serve in a reconnaissance role and fire two AGM-114 Hellfire missiles. The aircraft, in use since 1995, has seen combat over Afghanistan, Pakistan, Bosnia, Serbia, Iraq, and Yemen. It is a remote-controlled aircraft.

The MQ-1 Predator is a system, not just an aircraft. The fully operational system consists of four air vehicles (with sensors), a ground control station (GCS), a Predator primary satellite link communication suite, and 55 people. In the over-all U.S. Air Force integrated UAV system the Predator is considered a "Tier II" vehicle.[2]

The Predator system was initially designated the RQ-1 Predator. The "R" is the Department of Defense designation for reconnaissance and the "Q" refers to an unmanned aircraft system.[3] The "1" describes it as being the first of a series of aircraft systems built for unmanned reconnaissance. Pre-production systems were designated as RQ-1A, while the RQ-1B (not to be confused with the RQ-1 Predator B, which became the MQ-9 Reaper) denotes the baseline production configuration. It should be emphasized that these are designations of the system as a unit. The actual aircraft themselves were designated RQ-1K for pre-production models, and RQ-1L for production models.[4] In 2005, the Air Force officially changed the designation to MQ-1 (the "M" designates multi-role) to reflect its growing use as an armed aircraft.[5]

As of 2009[update] the Air Force’s fleet stands at 195 Predators and 28 Reapers.[1]

More than one third of all deployed Predator spy planes have crashed. 55 were lost because of "equipment failure, operator errors or weather". Four of them were shot down in Bosnia, Kosovo and Iraq; 11 were lost in combat situations, such as "running out of fuel while protecting troops under fire.

At Paris Air Show 2007
A Predator flies on a simulated Navy aerial reconnaissance flight off the coast of southern California on Dec. 5, 1995.

The CIA and the Pentagon had each been experimenting with reconnaissance drones since the early 1980s. The CIA preferred small, lightweight, unobtrusive drones, in contrast to the USAF. In the early 1990s the agency became interested in the "Amber", a drone developed by Abraham Karem and his company, Leading Systems Inc.[4]. Karem was the former chief designer for the Israeli Air Force, and had migrated to the United States in the late 1970s. Karem's company had since gone bankrupt and been bought up by a US defense contractor. The CIA secretly bought five drones (now called the "Gnat") from them. Karem agreed to produce a quiet engine for the vehicle, which had until then sounded like "a lawnmower in the sky". The new development became known as the "Predator".[6]

General Atomics Aeronautical Systems was awarded a contract to develop the Predator in January 1994, and the initial Advanced Concept Technology Demonstration (ACTD) phase lasted from January 1994 to June 1996. The aircraft itself was a derivative of the GA Gnat 750 UAV. During the ACTD phase, three systems were purchased from GA, comprising twelve aircraft and three ground control stations.[7]

From April through May, 1995, the Predator ACTD aircraft were flown as a part of the Roving Sands 1995 exercises in the U.S. The exercise operations were successful, and this led to the decision to deploy the system to the Balkans later in the summer of 1995.[7]

Cost for an early production Predator was about $3.2 million USD.[4]

The CIA arranged for Air Force teams trained by the 11th Reconnaissance Squadron at Nellis Air Force Base, Nevada, to fly the agency's Predators. "First in Bosnia and then in Kosovo, CIA officers began to see the first practical returns ..."[8]

By the time of the Afghan campaign, the Air Force had acquired 60 Predators, and lost 20 of them in action. Few if any of the losses were from enemy action, the worst problem apparently being foul weather, particularly icy conditions. Some critics within the Pentagon saw the high loss rate as a sign of poor operational procedures. In response to the losses caused by cold weather flight conditions, a few of the later Predators obtained by the USAF were fitted with deicing systems, along with an uprated turbocharged engine and improved avionics. This improved "Block 1" version was referred to as the "RQ-1B", or the "MQ-1B" if it carried munitions; the corresponding air vehicle designation was "RQ-1L" or "MQ-1L".

[edit] Command and sensor systems

During the campaign in the former Yugoslavia, a Predator's pilot would sit with several payload specialists in a van near the runway of the drone's operating base. (In its Balkan operation, the CIA secretly flew Predators out of Hungary and Albania.) Direct radio signals controlled the drone's takeoff and initial ascent. Then communications shifted to military satellite networks linked to the pilot's van. Pilots experienced a delay of several seconds between tugging their joysticks and the drone's response. But by 2000, improvements in communications systems [perhaps by use of the USAF's JSTARS system] now made it possible, at least in theory, to fly the drone remotely from great distances. It was no longer necessary to use close-up radio signals during the Predator's takeoff and ascent. The entire flight could be controlled by satellite from any command center with the right equipment. The CIA proposed to attempt over Afghanistan the first fully remote Predator flight operations, piloted from the agency's headquarters at Langley.[9]

The Predator air vehicle and sensors are controlled from the ground station via a C-band line-of-sight data link or a Ku-band satellite data link for beyond-line-of-sight operations. During flight operations the crew in the ground control station is a pilot and two sensor operators. The aircraft is equipped with the AN/AAS-52 Multi-spectral Targeting System,[10] a color nose camera (generally used by the pilot for flight control), a variable aperture day-TV camera, and a variable aperture infrared camera (for low light/night). Previously, Predators were equipped with a synthetic aperture radar for looking through smoke, clouds or haze, but lack of use validated its removal to reduce weight. The cameras produce full motion video and the synthetic aperture radar produced still frame radar images. There is sufficient bandwidth on the datalink for two video sources to be used at one time, but only one video source from the sensor ball can be used at any time due to design limitations. Either the daylight variable aperture or the infrared electro-optical sensor may be operated simultaneously with the synthetic aperture radar, if equipped.

All Predators are equipped with a laser designator that allows the pilot to identify targets for other aircraft and even provide the laser-guidance for manned aircraft. This laser is also the designator for the AGM-114 Hellfire that are carried on the MQ-1.

[edit] Deployment methodology
UAV Operators at Balad Camp Anaconda, Iraq, April 20, 2005.

Each Predator air vehicle can be disassembled into six main components and loaded into a container nicknamed "the coffin." This enables all system components and support equipment to be rapidly deployed worldwide. The largest component is the ground control station and it is designed to roll into a C-130 Hercules. The Predator primary satellite link consists of a 6.1 meter (20 ft) satellite dish and associated support equipment. The satellite link provides communications between the ground station and the aircraft when it is beyond line-of-sight and is a link to networks that disseminate secondary intelligence. The RQ-1A system needs 1,500 by 40 meters (5,000 by 125 ft) of hard surface runway with clear line-of-sight to each end from the ground control station to the air vehicles. Initially, all components needed be located on the same airfield.

Currently, the US Air Force uses a concept called "Remote-Split Operations" where the satellite datalink is located in a different location and is connected to the GCS through fiber optic cabling. This allows Predators to be launched and recovered by a small "Launch and Recovery Element" and then handed off to a "Mission Control Element" for the rest of the flight. This allows a smaller number of troops to be deployed to a forward location, and consolidates control of the different flights in one location.

The improvements in the MQ-1B production version include an ARC-210 radio, an APX-100 IFF/SIF with mode 4, a glycol-weeping “wet wings” ice mitigation system, up-graded turbo-charged engine, fuel injection, longer wings, dual alternators as well as other improvements.

On 18 May 2006, the Federal Aviation Administration (FAA) issued a certificate of authorization which will allow the M/RQ-1 and M/RQ-9 aircraft to be used within U.S. civilian airspace to search for survivors of disasters. Requests had been made in 2005 for the aircraft to be used in search and rescue operations following Hurricane Katrina, but because there was no FAA authorization in place at the time, the assets were not used. The Predator's infrared camera with digitally-enhanced zoom has the capability of identifying the heat signature of a human body from an altitude of 3 km (10,000 ft), making the aircraft an ideal search and rescue tool.[11]

The longest declassified Predator flight was 40 hours, 5 minutes.[12]

The total flight time has reached 400 thousand hours as of March 2009.[13].

[edit] Armed version development
MQ-1 Predator, with inert Hellfire missiles, on display at the 2006 Edwards Open House

The Air Force handed the Predator over to the service's Big Safari office after the Kosovo campaign in order to accelerate tests of the UAV in a strike role, fitted with reinforced wings and stores pylons to carry munitions, as well as a laser target designator. This effort led to a series of tests, on 21 February 2001, in which the Predator fired three Hellfire anti-armor missiles, scoring hits on a stationary tank with all three missiles. The scheme was put into service, with the armed Predators given the new designation of MQ-1A. Given that a Predator is very unobtrusive and the Hellfire is supersonic, such a combination gives little warning of attack.[4][14]

In the winter of 2000-2001, after seeing the results of Predator reconnaissance in Afghanistan (see below), Cofer Black, head of the CIA's Counterterrorist Center (CTC), became a "vocal advocate" of arming the Predator with missiles to target Osama bin Laden in the country. He also believed that CIA pressure and practical interest was causing the USAF's armed Predator program to be significantly accelerated. Black, and "Richard", who was in charge of the CTC's Bin Laden Issue Station, continued to press during 2001 for a Predator armed with Hellfire missiles.

Further weapons tests occurred between 22 May and 7 June 2001, with mixed results. While missile accuracy was excellent, there were some problems with missile fuzing ..." In the first week of June, in the Nevada Desert, a Hellfire missile was successfully launched on a replica of bin Laden's Afghanistan Tarnak residence. A missile launched from a Predator exploded inside one of the replica's rooms; it was concluded that any people in the room would have been killed. However, the armed Predator did not go into action before 9/11.[15]

The Air Force has also investigated using the Predator to drop battlefield ground sensors, and to carry and deploy the "Finder" mini-UAV.[4]

[edit] NASA and NPGS unarmed research versions

Two unarmed versions, known as the General Atomics ALTUS were built, ALTUS I for the Naval Postgraduate School and ALTUS II for the NASA ERAST Project in 1997 and 1996, respectively.

[edit] MQ-1C Warrior
Main article: MQ-1C Warrior

The U.S. Army selected the MQ-1C Warrior as the winner of the Extended-Range Multi-Purpose UAV competition August 2005, and the type is due to become operational in 2009.

[edit] Operational history
RQ-1A Predator

The total numbers of Predators in Air Force use as of March 2009 were 195 Predators and 28 Reapers. Predators and Reapers fired missiles 244 times in Iraq and Afghanistan in 2007 and 2008. A report in March 2009 indicated that U.S. Air Force had lost 70 Predators in air crashes during its operational history. Fifty-five were lost to equipment failure, operator error, or weather. Four have been shot down in Bosnia, Kosovo, or Iraq. Eleven more were lost to operational accidents on combat missions.[16]
[edit] Squadrons and operational units

During the initial ACTD phase, the United States Army led the evaluation program, but in April 1996, the Secretary of Defense selected the U.S. Air Force as the operating service for the RQ-1A Predator system. The 11th, 15th, and 17th Reconnaissance Squadrons, Creech Air Force Base, Nevada, and the Air National Guard's 163d Reconnaissance Wing at March Air Reserve Base, California, currently operate the MQ-1 (see below).

In 2005, the U.S. Department of Defense recommended retiring Ellington Field's 147th Fighter Wing's F-16 Falcon fighter jets (a total of 15 aircraft), which was approved by the Base Realignment and Closure committee. They will be replaced with 12 MQ-1 Predator UAVs, and the new unit should be fully equipped and outfitted by 2009.[17] The wing's combat support arm will remain intact. The 272nd Engineering Installation Squadron, an Air National Guard unit currently located off-base, will move into Ellington Field in its place.

U.S. Customs and Border Protection is operating an unknown number of Predators.[18]

[edit] Balkans
A shot down RQ-1 Predator in a museum in Belgrade, Serbia

The first overseas deployment was to the Balkans, from July to November 1995, under the name Nomad Vigil. Operations were based in Gjader, Albania. Several Predators were lost during Nomad Vigil.

* One aircraft (serial 95-3017) was lost on 18 April 1999, following fuel system problems and icing.[19]
* A second aircraft (serial 95-3019) was lost on 13 May, when it was shot down by a Serbian Strela-1M surface-to-air missile over the village of Biba. A Serbian TV crew videotaped this incident.[20]
* A third aircraft (serial number 95-3021) crashed on 20 May near the town of Talinovci, and Serbian news reported that this, too, was the result of anti-aircraft fire.[20][21]

[edit] Afghanistan

In 2000 a joint CIA-Pentagon effort was agreed to locate Osama bin Laden in Afghanistan. Dubbed "Afghan Eyes", it involved a projected 60-day trial run of Predators over the country. The first experimental flight was held on 7 September 2000. White House security chief Richard A. Clarke was impressed by the resulting video footage; he hoped that the drones might eventually be used to target Bin Laden with cruise missiles or armed aircraft. Clarke's enthusiasm was matched by that of Cofer Black, head of the CIA's Counterterrorist Center (CTC), and Charles Allen, in charge of the CIA's intelligence-collection operations. The three men backed an immediate trial run of reconnaissance flights. Ten out of the ensuing 15 Predator missions over Afghanistan were rated successful. On at least two flights, a Predator spotted a tall man in white robes at bin Laden's Tarnak Farm compound outside Kandahar; the figure was subsequently deemed to be "probably bin Laden".[22]

"A large video screen loomed in the middle of the CIA's makeshift flight operations center. Air Force drone pilots and CIA officers from the Counterterrorist Center and the CTC's bin Laden unit huddled in the darkened room in the wooded Langley campus from midnight to dawn". But by mid-October, deteriorating weather conditions made it difficult for the Predator to fly from its base in Uzbekistan, and the run of flights was suspended.[23]

It was hoped to resume flights in spring 2001, but debates about the use of an armed Predator (see above) delayed a restart. Only on 4 September 2001 (after the Bush cabinet approved a Qaeda/Taliban plan) did CIA chief Tenet order the agency to resume reconnaissance flights. The Predators were now weapons-capable, but didn't carry missiles because the host country (presumably Uzbekistan) hadn't granted permission.

Subsequent to 9/11, approval was quickly granted to ship the missiles, and the Predator aircraft and missiles reached their overseas location on 16 September 2001. The first mission was flown over Kabul and Kandahar on 18 September without carrying weapons. Subsequent host nation approval was granted on 7 October and the first armed mission was flown on the same day.[24]

* On 4 February 2002, an armed Predator attacked a convoy of sport utility vehicles, killing a suspected al Qaeda leader. The intelligence community initially expressed doubt that he was Osama bin Laden.

* On 4 March 2002, a CIA-operated Predator fired a Hellfire missile into a reinforced al Qaeda machine gun bunker that had pinned down an Army Ranger team whose CH-47 Chinook had crashed on the top of Takur Ghar Mountain in Afghanistan. Previous attempts by flights of F-15 and F-16 aircraft were unable to destroy the bunker. This action took place during what has become known as the "Battle of Robert's Ridge", a part of Operation Anaconda. This appears to be the first use of such a weapon in a close air support role.[25]

[edit] Pakistan
Main article: Drone attacks in Pakistan by the United States

Since at least 2004, the US Central Intelligence Agency has allegedly been operating the drones out of Shamsi airfield in Pakistan to attack militants in Pakistan's Federally Administered Tribal Areas.[26] [27]

* On 13 May 2005, Haitham al-Yemeni, an al Qaeda explosives expert from Yemen, was killed in a village in northwest Pakistan near the Afghanistan border by a CIA-operated MQ-1 Predator aircraft firing a Hellfire missile.[28]
* On 3 December 2005, a US Predator UAV reportedly killed high-level Al Qaeda member Chief Abu Hamza Rabia in his sleep in Haisori, Pakistan. Four others were also killed.[29]
* On 13 January 2006, several US Predators conducted an airstrike on Damadola village in Pakistan where al Qaeda's second-in-command Ayman al-Zawahiri was reportedly located. CIA Predators reportedly fired 10 missiles killing 18 civilians, including five women and five children. According to Pakistani authorities, the U.S. strike was based on faulty intelligence and al-Zawahiri was not present in the village. Pakistani officials nevertheless claimed that Midhat Mursi (Abu Khabab al-Masri) — al Qaeda's master bomb maker and chemical weapons expert, Khalid Habib — the al Qaeda operations chief for Pakistan and Afghanistan, and Abdul Rehman al Magrabi — a senior operations commander for al Qaeda were all killed in the Damadola attack.[30][31] U.S. and Pakistani officials now say that none of those al Qaeda leaders perished in the strike and that only local villagers were killed.[32]
* On 30 October 2006, the Bajaur airstrike was conducted, targeting an alleged militant training camp and targeting al Qaeda's second-in-command, Ayman al-Zawahiri. The strike hit a religious school where militants were believed to be present. Eyewitness reports said that two explosions were heard following a missile being fired from an MQ-1 Predator. Pakistani intelligence officials have told western media that Predators were used in the strike, which utilized Hellfire missiles. Although Zawahiri does not appear to have been caught in the strike, Pakistani officials have stated that between two and five senior al Qaeda fighters, including the mastermind of the airliners plot in the UK, were killed in the raid.[33] While some reports state that the school was a religious training center, Pakistani authorities, including President Musharraf, have stated that the school provided military training to al Qaeda militants. Casualty figures range from 80 to 85 people killed.[34]
* On 29 January 2008 an MQ-1B killed Abu Laith al-Libi in Mir Ali.
* Al-Qaeda chief dies in missile airstrike The Guardian 1 June 2008 see Damadola airstrike
* US Releases Video of Clash Along Pakistan VOA News 12 June 2008
* Pakistan Angry as Strike by U.S. Kills 11 Soldiers NY Times 12 June 2008
* U.S. Military Releases Video Footage of Airstrike in Pakistan Washington Post 12 June 2008
* CIA given green light to bomb Osama bin Laden [link] 2 July 2008
* First confrontation with Pakistani jets. An MQ-1 had to return to base after Pakistani jets were scrambled.[35]
* A UAV crash landed in the area of Angoor Adda, which has been an area of constant American activity. Local tribesmen have picked up the wreckage and handed over the security forces.[36] Pentagon has denied this.
* 'US drone' in fatal Pakistan raid AlJazeera 14 February 2009

[edit] Yemen
Main article: CIA activities in Yemen

* On 3 November 2002, a CIA Predator (being flown by an Air Force pilot from a French military base, Camp Lemonier, in Djibouti) was again used in a military strike. A Hellfire missile was fired at a car in Yemen, killing Qaed Senyan al-Harthi, an al-Qaeda leader thought to be responsible for the USS Cole bombing. It was the first direct US strike in the War on Terrorism outside Afghanistan.[28][37]
* Steve Scher on Weekday – February 23, 2007 KUOW-FM interviews James Bamford on the National Security Agency (Note: minutes 21–24 of 54 minute audio)

[edit] Iraq
An MQ-1B Predator unmanned aircraft from the 361st Expeditionary Reconnaissance Squadron takes off July 9 from Ali Base, Iraq, in support of Operation Iraqi Freedom.

* An Iraqi MiG-25 shot down a Predator performing reconnaissance over the no fly zone in Iraq on 23 December 2002, after the Predator fired a missile at it. This was the first time in history a conventional aircraft and a drone had engaged in combat. Predators had been armed with AIM-92 Stinger air-to-air missiles, and were being used to "bait" Iraqi fighter planes, then run. In this incident, the Predator didn't run, but instead fired one of the Stingers. The Stinger's heat-seeker became "distracted" by the MiG's missile and so missed the MiG, and the Predator was destroyed.[38][39]
* During the initial phases of the 2003 U.S. invasion of Iraq, a number of older Predators were stripped down and used as decoys to entice Iraqi air defenses to expose themselves by firing.[4][38]
* From July 2005 to June 2006, the 15th Reconnaissance Squadron participated in more than 242 separate raids, engaged 132 troops in contact-force protection actions, fired 59 Hellfire missiles; surveyed 18,490 targets, escorted four convoys, and flew 2,073 sorties for more than 33,833 flying hours.[40]

[edit] Others

Since the end of 2004 it is also used by the Italian Air Force and since 2006 by the Royal Air Force. Two civil-registered unarmed MQ-1s have been operated by the Office of the National Security Advisor in the Philippines since 2006.[citation needed]

[edit] Operators


* Aeronautica Militare
o 32º Stormo — Foggia, Amendola Air Force Base
+ 28º Gruppo

United Kingdom

* Royal Air Force
o No. 1115 Flight RAF
o No. 39 Squadron RAF;[41]


* Turkish Air Force;[42] The Turkish Air Force has on order 6 MQ-1 Predators via the USA's Foreign Military Sales mechanism.

United States

* United States Air Force
o Air Combat Command
+ 432d Air Expeditionary Wing—Creech Air Force Base, Nevada
# 11th Reconnaissance Squadron
# 15th Reconnaissance Squadron
# 17th Reconnaissance Squadron
+ 53d Wing—Eglin AFB, Florida
# 556th Test and Evaluation Squadron—Creech Air Force Base, Nevada
o Air Force Special Operations Command
+ 1st Special Operations Wing
# 3d Special Operations Squadron—Creech Air Force Base, Nevada
o Air National Guard
+ Texas Air National Guard
# 147th Reconnaissance Wing—Ellington Field
* 111th Reconnaissance Squadron
+ California Air National Guard
# 163d Reconnaissance Wing—March Joint Air Reserve Base
* 196th Reconnaissance Squadron
* Central Intelligence Agency
* U.S. Customs and Border Protection

[edit] Specifications

General characteristics

* Crew: 2 (one pilot and one sensor operator)
* Length: 27 ft (8.22 m)
* Wingspan: 48.7 ft (14.8 m (dependent on block of aircraft))
* Height: 6.9 ft (2.1 m)
* Wing area: 123.3 sq ft[43] (11.5 m²;)
* Empty weight: 1,130 lb[44] (512 kg)
* Loaded weight: 2,250 lb (1,020 kg)
* Max takeoff weight: 2,250 lb[44] (1,020 kg)
* Powerplant: 1× Rotax 914F turbocharged Four-cylinder engine, 115 hp[44] (86 kW)


* Maximum speed: 135 mph (117 knots, 217 km/h)
* Cruise speed: 81–103 mph (70–90 knots, 130–165 km/h)
* Stall speed: 62 mph (54 knots (dependent on weight of aircraft), 100 km/h)
* Range: >2,000 nm[45] (3,704 km, 2,302 miles)
* Service ceiling: 25,000 ft [44] (7,620 m)


2 hard points

* 2 × AGM-114 Hellfire (MQ-1B)
* 2 × AIM-92 Stinger (unknown number) (MQ-1B)
Add a Comment:
No comments have been added yet.

Lockheed black horse X-55

Manned Spaceflight Engineer Program


The USAF and the National Reconnaissance Office (NRO) of the DoD participated in the development of the Space Shuttle from its official inception in 1969. To save money, the shuttle was intended to serve as the United States' national launch system for all civilian, military, and classified payloads.[1][2][3] The DoD influenced key aspects of the shuttle's design such as the size of its cargo bay.[3][4] The USAF in the 1970s hoped to buy up to three shuttles[3][5] and fly them with all-military crews. As with the earlier X-20 Dyna-Soar and Manned Orbiting Laboratory, budget concerns ended the "Blue Shuttle" program,[5] but the USAF gained the use of up to one third of all launches[1] and the right to requisition the next available launch for high-priority payloads.[5] It renovated an existing launch site at Vandenberg Air Force Base in California to send shuttles into polar orbits[4] and established the Manned Spaceflight Control Squadron at NASA Mission Control in Houston. The squadron's personnel would monitor military shuttle flights, ahead of a future mission control center in Colorado that would monitor an expected 12 to 14 military shuttle flights each year.[1]


Many active-duty USAF and other American military personnel have served (about 60% of the total in 1985),[6] and continue to serve, as NASA astronauts. Although with the end of "Blue Shuttle" DoD no longer needed its own shuttle pilots and mission specialists,[5] it still desired specially-trained military astronauts to handle classified payloads on the about 100 or more shuttle flights it expected to use.[1] While NASA offered to train the DoD astronauts the military wanted to control their training, as DoD astronauts who went to NASA rarely returned.[5]

In 1979, the first 13 Manned Spaceflight Engineers (MSEs) were selected,[7] chosen from all services[4] and based at Los Angeles Air Force Base

* Frank J. Casserino
* Jeffrey E. Detroye
* Michael A. Hamel
* Terry A. Higbee
* Daryl J. Joseph
* Malcolm W. Lydon
* Gary E. Payton (flew on STS-51-C, 1985)
* Jerry J. Rij
* Paul A. Sefchek
* Eric E. Sundberg
* David M. Vidrine, USN (only non-USAF)[5]
* John B. Watterson
* Keith C. Wright

In 1982, another 14 were selected,[9] chosen only from the USAF:

* James B. Armor, Jr.
* Michael W. Booen
* Livingston L. Holder, Jr.
* Larry D. James
* Charles E. Jones
* Maureen C. LaComb
* Michael R. Mantz
* Randy T. Odle
* William A. Pailes (flew on STS-51-J, 1985)
* Craig A. Puz
* Katherine E. Sparks Roberts
* Jess M. Sponable
* William D. Thompson
* Glenn S. Yeakel

In 1985, five more were selected

* Joseph J. Caretto
* Robert B. Crombie
* Frank M. DeArmond
* David P. Staib, Jr.
* Teresa M. Stevens


The MSE program faced internal and external challenges. NASA was reluctant to assign MSEs to its flights given their lack of NASA training and the need for spots for other payload specialists.[5] Internal USAF debates on the usefulness of manned spaceflight to the DoD[4] caused uncertainty for MSE personnel. New regulations in 1984 that strongly encouraged USAF personnel to move to another assignment after four years caused many early MSEs to transfer out of the program,[5] with only nine active by late 1985.[6]


Even before the loss of Challenger in January 1986, ongoing launch delays caused the USAF and NRO to reduce their dependence on the shuttle to launch DoD payloads by, starting in 1984, purchasing the Titan IV unmanned rocket.[3][5] Challenger accelerated these plans[4] but several NRO payloads only the shuttle could launch were grounded until it flew again,[3] a dilemma NRO had feared as early as the mid-1970s.[2]

With DoD's return to unmanned rockets and less need for dedicated military astronauts, the MSE program ended in 1988 with only two MSEs having flown into space. The Houston squadron was dissolved, construction of the Colorado center ended, and the California launch site used for unmanned rockets.[1] Only active duty-military NASA astronauts flew on subsequent missions with DoD payloads, the only exceptions being former Marine Story Musgrave and former DoD scientist Kathryn C. Thornton on STS-33.[4]

Shuttle missions with classified payloads

* STS-4, 1982 (non-DoD flight with classified DoD payload)
* STS-51-C, 1985 (first all-DoD flight)
* STS-51-J, 1985
* STS-27, 1988
* STS-28, 1989
* STS-33, 1989
* STS-36, 1990
* STS-38, 1990
* STS-39, 1991 (first unclassified DoD flight; only one payload was classified)[4]
* STS-44, 1991 (the payload was unclassified before launch)[4]
* STS-53, 1992

Add a Comment:
No comments have been added yet.

The Northrop Grumman (formerly Ryan Aeronautical) RQ-4 Global Hawk (known as Tier II+ during development) is an unmanned aerial vehicle (UAV) used by the United States Air Force as a surveillance aircraft.

In role and design, the Global Hawk is similar to the Lockheed U-2, the venerable 1950s spy plane. It is a theater commander's asset to both provide a broad overview and systematically target surveillance shortfalls. The Global Hawk air vehicle is able to provide high resolution Synthetic Aperture Radar (SAR)—that can penetrate cloud-cover and sandstorms—and Electro-Optical/Infrared (EO/IR) imagery at long range with long loiter times over target areas. It can survey as much as 40,000 square miles (100,000 square kilometers) of terrain a day.

Potential missions for the Global Hawk cover the spectrum of intelligence collection capability to support forces in worldwide peace, crisis, and wartime operations. According to the Air Force, the capabilities of the aircraft will allow more precise targeting of weapons and better protection of forces through superior surveillance capabilities.

The "R" is the Department of Defense designation for reconnaissance; "Q" means unmanned aircraft system. The "4" refers to it being the fourth of a series of purpose-built unmanned aircraft systems.

The Global Hawk costs about $35 million USD each[1] (actual per-aircraft costs; with development costs also included, the per-aircraft cost rises to $123.2 million USD each

RQ-4 Global Hawk.ogv
Play video
RQ-4 Global Hawk USAF video

[edit] Initial development

The first seven aircraft were built under the Advanced Concept Technology Demonstration (ACTD) program, sponsored by DARPA,[3] in order to evaluate the design and its capabilities. Due to world circumstances, the capabilities of the aircraft were in high demand, so the prototype aircraft were operated by the U.S. Air Force in theater in the War in Afghanistan.

In an unusual move, the aircraft entered initial low-rate production concurrently while still in engineering and manufacturing development. Nine production Block 10 aircraft (sometimes referred to as RQ-4A configuration) were produced, two of which were transferred to the US Navy. Two more were sent to Iraq to support operations there. The final Block 10 aircraft was delivered on June 26, 2006.[4]

In order to increase the aircraft's capabilities, the airframe was redesigned, with the nose section and wings being stretched. The changes, with the designation RQ-4 Block 20, allow the aircraft to carry up to 3,000 pounds of internal payload. These changes were introduced with the first Block 20 aircraft, the 17th Global Hawk produced, which was rolled out in a ceremony on August 25, 2006.[5] First flight of the Block 20 from the USAF Plant 42 in Palmdale, California to Edwards Air Force Base took place on March 1, 2007. Developmental testing of Block 20 took place in and 2008. Future Block 30 and 40 aircraft, similar in size to the Block 20, are scheduled for development from 2008 to 2010. [6]

[edit] Cost overruns

Program development cost overruns had put the Global Hawk system at risk of cancellation. Per-unit costs in mid-2006 were 25% over baseline estimates, caused by both the need to correct design deficiencies as well as increase the system's capabilities. This caused some concerns about a possible congressional termination of the program if its national security benefits could not be justified.[7][8] However, in June 2006, the Global Hawk program was restructured. Completion of an operational assessment report by the Air Force was slipped due to manufacturing and development delays from August 2005 to November 2007. The operational assessment report was released in March 2007 and production of the 54 air vehicles planned has been extended by two years to 2015.[9]

[edit] United States Navy

The United States Navy took delivery of two of the Block 10 aircraft to be used to evaluate maritime surveillance capabilities, designated N-1. The initial example, Bureau Number 166509, was tested in a naval configuration at Edwards Air Force Base for several months, later ferrying to NAS Patuxent River on March 28, 2006 to begin the Global Hawk Maritime Demonstration (GHMD) program. Navy squadron VX-20 was tasked with operating the GHMD system.[10][11] [12]

In the spring of 2006, the GHMD aircraft took part in a demonstration of the type's ability to conduct maritime drug interdiction surveillance, completing four flights over the Caribbean and off the coast of Florida, locating and identifying numerous airborne and surface targets.[13]

The GHMD aircraft flew in the Rim of the Pacific (RIMPAC) exercise for the first time in July, 2006. Although RIMPAC operations were in the vicinity of Hawaii, the aircraft was operated from Edwards, requiring flights of approximately 2,500 miles (4,000 km) each way to the operations area. Four flights were performed, resulting in over 24 hours of persistent maritime surveillance coordinated with USS Abraham Lincoln and Bonhomme Richard. As a part of the demonstration program, Global Hawk was tasked with maintenance of maritime situational awareness, contact tracking, and imagery support of various exercise operations. The imagery obtained by Global Hawk was transmitted to NAS Patuxent River for processing before being forwarded on to the fleet operations off Hawaii, thus exercising the global nature of this aircraft's operations.[14]

Northrop Grumman entered a version of the RQ-4B in the US Navy's Broad Area Maritime Surveillance (BAMS) UAV contract competition. On 22 April 2008 the announcement was made that the Northrop Grumman RQ-4N had won the bid, with the Navy awarding a contract worth $1.16 billion.[15]

[edit] NASA

In December 2007, two Global Hawks were transferred from the U.S. Air Force to NASA's Dryden Flight Research Center at Edwards Air Force Base. Initial research activities beginning in the second quarter of 2009 will support NASA's high-altitude, long-duration Earth science missions.[16][17] The two Global Hawks were the first and sixth aircraft built under the original DARPA Advanced Concept Technology Demonstration program, and were made available to NASA when the Air Force had no further need for them. [3] Northrop Grumman is an operational partner with NASA and will use the aircraft to demonstrate new technologies and to develop new markets for the aircraft, including possible civilian uses.[17]

[edit] NATO

NATO has announced that it expects to have a fleet of up to eight Global Hawks by the year 2012. The aircraft are to be equipped with MP-RTIP radar systems. NATO has budgeted €1 billion for the project, and a letter of intent has been signed, although contracting with Northrop Grumman has not been finalized. [18]

[edit] Luftwaffe
EuroHawk mock-up at the ILA 2006

The German Luftwaffe has ordered a variant of the RQ-4B equipped with European sensors, dubbed EuroHawk. It combines a normal RQ-4B airframe with an EADS reconnaissance payload.

The aircraft is based on the Block 20/30/40 RQ-4B, but will be equipped with EADS' SIGINT package to fulfil Germany's desire to replace their aging Dassault-Breguet Atlantique electronic surveillance aircraft.[citation needed] A first batch of 5 EuroHawks will be delivered for the Luftwaffe from 2010 on.

The costs for the initial five aircraft are approx. €430 million for the development, and €430 million for the actual procurement.

[edit] Potential operators

Australia had considered the purchase of a number of Global Hawk aircraft for maritime and land surveillance. The Global Hawk was to be assessed against the RQ-1 Mariner in trials in 2007.[19] If selected the Global Hawk aircraft would have operated in conjunction with manned P-8A Poseidon aircraft by 10 and 11 Squadrons of the RAAF. This combination, or a similar one, would replace existing AP-3C Orion aircraft in 2018. With the current economic situation, and the delivery schedule pushed back to 2015; the Australian government had decided to cancel the order. [20]

Canada is also a potential customer, looking at the Global Hawk for maritime and land surveillance as either a replacement for its fleet of CP-140 Aurora patrol aircraft or to supplement manned patrols of remote Arctic and maritime environments. Spain has a similar requirement, and has existing contacts with Northrop Grumman. [21]

South Korea's Defense Acquisition Program Administration (DAPA) had expressed interest in acquiring at least four RQ-4B and support equipment by 2011 to increase the intelligence capabilities of the South Korean military after the return of the Wartime Operational Control from the U.S. to ROK, and has allocated approximately USD$19m for evaluation purposes. There is ongoing debate among government officials on whether to take the US offer of Global Hawks or to press on with their domestic UAV development program.

[edit] Design

The RQ-4 is powered by an Allison Rolls-Royce AE3007H turbofan engine with 7,050lbf (3,200 kgf / 31.4 kN) thrust, and carries a payload of 2,000 pounds (900 kilograms). The fuselage is mostly of conventional aluminum airframe construction, while the wings are made of carbon composite.

The Global Hawk is the first UAV to be certified by the FAA to file its own flight plans and use civilian air corridors in the United States with no advance notice.[22] This potentially paves the way for a revolution in unmanned flight, including that of remotely piloted cargo or passenger airliners.

[edit] Integrated system
The Global Hawk's wings, fuselage, fairings, nacelles, and tails are manufactured from high strength-to-weight composites.

The Global Hawk UAV system comprises an air vehicle segment consisting of air vehicles with sensor payloads, avionics, and data links; a ground segment consisting of a Launch and Recovery Element (LRE), and a Mission Control Element (MCE) with embedded ground communications equipment; a support element; and trained personnel.

The Integrated Sensor Suite (ISS) is provided by Raytheon and consists of a synthetic aperture radar (SAR), electro-optical (EO), and infrared (IR) sensors. Either the EO or the IR sensors can operate simultaneously with the SAR. Each of the sensors provides wide area search imagery and a high-resolution spot mode. The SAR has a ground moving target indicator (GMTI) mode, which can provide a text message providing the moving target's position and velocity. Both SAR and EO/IR imagery are processed onboard the aircraft and transmitted to the MCE as individual frames. The MCE can mosaic these frames into images prior to further dissemination.

Navigation is via inertial navigation with integrated Global Positioning System updates. Global Hawk is intended to operate autonomously and "untethered" using a satellite data link (either Ku or UHF) for sending sensor data from the aircraft to the MCE. The common data link can also be used for direct down link of imagery when the UAV is operating within line-of-sight of users with compatible ground stations.

The ground segment consists of a Mission Control Element (MCE) and Launch and Recovery Element (LRE), provided by Raytheon. The MCE is used for mission planning, command and control, and image processing and dissemination; an LRE for controlling launch and recovery; and associated ground support equipment. (The LRE provides precision differential global positioning system corrections for navigational accuracy during takeoff and landings, while precision coded GPS supplemented with an inertial navigation system is used during mission execution.) By having separable elements in the ground segment, the MCE and the LRE can operate in geographically separate locations, and the MCE can be deployed with the supported command's primary exploitation site. Both ground segments are contained in military shelters with external antennas for line-of-sight and satellite communications with the air vehicles.

[edit] Sensor packages

The Global Hawk carries the "Hughes Integrated Surveillance & Reconnaissance (HISAR)" sensor system. HISAR is a lower-cost derivative of the ASARS-2 package that Hughes developed for the Lockheed U-2. HISAR is also fitted in the US Army's RC-7B Airborne Reconnaissance Low Multifunction (ARLM) manned surveillance aircraft, and is being sold on the international market. HISAR integrates a SAR-MTI system, along with an optical and an infrared imager. All three sensors are controlled and their outputs filtered by a common processor. The digital sensor data can be transmitted at up to 50 Mbit/s to a ground station in real time, either directly or through a communications satellite link.

The SAR-MTI system operates in the X-band and provides a number of operational modes:

* The wide-area MTI mode can detect moving targets within a radius of 62 miles (100 kilometers).
* The combined SAR-MTI strip mode provides 20 foot (6 meter) resolution over a swath 23 miles (37 kilometers) wide at ranges from 12.4 to 68 miles (20 to 110 kilometers).
* The SAR spot mode can provide 6 foot (1.8 meter) resolution over 3.8 square miles (10 square kilometers), as well as provide a sea-surveillance function.

The visible and infrared imagers share the same gimballed sensor package, and use common optics, providing a telescopic close-up capability. It can be optionally fitted with an auxiliary SIGINT package. To improve survivability, the Global Hawk is fitted with a Raytheon developed AN/ALR-89 self-protection suite consisting of the AN/AVR-3 Laser Warning System, AN/APR-49 Radar Warning Receiver and a jamming system. An ALE-50 towed decoy also aids in the Global Hawk's deception of enemy air defenses.[23] [24]

In July, 2006, the Air Force began testing segments of the improved Global Hawk Block 30 upgrades in the Benefield Anechoic Facility at Edwards AFB. This version incorporates an extremely sensitive SIGINT processor known as the Advanced Signals Intelligence Payload. [25]

In September 2006, testing began on a new specialty radar system, the Multi-Platform Radar Technology Insertion Program, or MP-RTIP, onboard the Scaled Composites Proteus. Once validated, one Global Hawk will be modified to carry this radar set, and the other, larger variant (known as the Wide-Area Surveillance or WAS sensor) will be installed on the Air Force E-10 MC2A testbed or E-8 Joint STARS aircraft.

[edit] Operational history

Air Force Global Hawk flight test evaluations are performed by the 452nd Flight Test Squadron at Edwards AFB. Operational USAF aircraft are flown by the 9th Reconnaissance Wing, 12th Reconnaissance Squadron at Beale Air Force Base. While testing the first two production aircraft, a delay in take off required a late night call to file a flight plan. When FAA received the call to fill in fields on his computer for SOBs (souls on board), his reply was, 'the computer can't take 0'.

Global Hawk ATCD prototypes have been used in the War in Afghanistan and in the Iraq War. While their data-collection capabilities have been praised, the aircraft did suffer a high number of accidents, with two of the aircraft, more than one quarter of the aircraft used in the wars, being lost. According to Australian press reports, the crashes were due to "technical failures or poor maintenance", with a failure rate per hour flown over 100 times higher than the F-16 fighters flown in the same wars. The manufacturer stated that it was unfair to compare the failure rates of a mature design to that of a prototype plane, and pointed to a lack of trained maintenance staff and spare parts.

[edit] Records

On March 21, 2001, aircraft number 982003, the third ACTD aircraft produced, set an official world endurance record for UAVs, at 30 hours, 24 minutes and 1 second, flying from Edwards.[26] During the same flight, it set an absolute altitude record of 19,928 meters (65,380.6 ft), which was later broken by the NASA Helios Prototype (although the absolute record was broken, the Global Hawk's record still stands in its FAI class category).[27]

On April 24, 2001 a Global Hawk flew non-stop from Edwards in the US to RAAF Base Edinburgh in Australia, making history by being the first pilotless aircraft to cross the Pacific Ocean. The flight took 22 hours, and set a world record for absolute distance flown by a UAV, 13,219.86 kilometers (8,214.44 mi).[28][29]

[edit] Incidents

On December 30, 2001 a Global Hawk crashed in Afghanistan.[30]

On July 10, 2002 a Global Hawk crashed in Pakistan due to an apparent engine failure.[31]

[edit] Variants

Initial production version for the USAF, 59 built.
Improved version with increased payload, wingspan increased to 130.9ft (39.8m) and length increased to 47.7ft (14.5m), due to the increased size and payload the range is reduced to 8,700nm [32]
For USN Broad Area Maritime Surveillance role.

[edit] Miniature variant

Scaled Composites and Northrop Grumman are also offering a 50% proportional shrink of the RQ-4A, currently known as the Model 396, as part of the USAF Hunter-Killer program.

[edit] Operators

United States

* United States Air Force
o Air Combat Command
+ 9th Reconnaissance Wing - Beale Air Force Base, California
# 1st Reconnaissance Squadron
# 12th Reconnaissance Squadron
+ 53rd Wing
# 31st Test and Evaluation Squadron - Edwards Air Force Base, California
o Air Force Reserve Command
+ 610th Regional Support Group
# 13th Reconnaissance Squadron - Beale Air Force Base, California
* United States Navy
o Dryden Flight Research Center

[edit] Specifications (RQ-4A)

General characteristics

* Crew: 0
* Length: 44 ft 5 in (13.5 m)
* Wingspan: 116 ft 2 in (35.4 m)
* Height: 15 ft 2 in (4.6 m)
* Empty weight: 8,490 lb (3,850 kg)
* Gross weight: 22,900 lb (10,400 kg)
* Powerplant: 1 × Allison Rolls-Royce AE3007H turbofan engine, 7,050 lbf (31.4 kN) each


* Cruise speed: 404 mph (650 km/h)
* Endurance: 36 hours
* Service ceiling: 65,000 ft (20,000 m)
Add a Comment:
No comments have been added yet.

this thing always seemed kind of ridiculous to me...ever notice that since september 11th it's never moved from yellow?

so i read the dhs memo on right wing extremist the other day. i thought it was a little over blown. i think it's a little suspicious that they would want to label brave men and women who swear an oath to uphold and defend the u.s. constitution as possible security threats.

why would they want to do this? could it be that they know that some of their directives are close to being un-constitutional? could it be they also know that these men and women would, if given an un-constitutional order such as seizing firearms from the american people, would not obey and possibly resist therefore becoming a national security threat in the eyes of the dhs?

anyway, i was thinking about this when i made my call to the dhs office. i told them that my neighbor had a ron paul sticker as well as an iraq veteran sticker on his car. i told the guy that i had read the dhs report on right wing extremist and was needing to know what to do. you will not believe what he suggested i do....he told me that if i was concerned i needed to call my local fbi office and make a report! i could not believe it! i swear, sometimes i do not know where i am living!

here's a link [link] to the real dhs advisory system.
Add a Comment:
No comments have been added yet.

The MQ-9 Reaper (originally the Predator B) is an unmanned aerial vehicle (UAV) developed by General Atomics Aeronautical Systems (GA-ASI) for use by the United States Air Force, the United States Navy, and the British Royal Air Force. The MQ-9 is the first hunter-killer UAV designed for long-endurance, high-altitude surveillance.[4]

The MQ-9 is a larger and more capable aircraft than the earlier MQ-1 Predator. It can use MQ-1's ground systems. The MQ-9 has a 950-shaft-horsepower turboprop engine, far more powerful than the Predator's 115 hp (86 kW) piston engine. The increase in power allows the Reaper to carry 15 times more ordnance and cruise at three times the speed of the MQ-1.[4]

In 2008 the New York Air National Guard 174th Fighter Wing began to transition from F-16 piloted planes to MQ-9 Reaper drones, which are capable of remote controlled or autonomous flight, becoming the first all-robot attack squadron.[5][6][7]

Then U.S. Air Force Chief of Staff General T. Michael Moseley said, "We've moved from using UAVs primarily in intelligence, surveillance, and reconnaissance roles before Operation Iraqi Freedom, to a true hunter-killer role with the Reaper."[4]

As of 2009[update] the U.S. Air Force’s fleet stands at 195 Predators and 28 Reapers.[2]

Design and development

With the success of the MQ-1 in combat, General Atomics anticipated the Air Force's desire for an upgraded aircraft and, using its own funds, set about redesigning Predator.

Prototype "Predator B"

General Atomics began development of the Reaper with the "Predator B-001", a proof-of-concept aircraft, which first flew on 2 February 2001. The B-001 was powered by a Garrett AiResearch TPE-331-10T turboprop engine with 950 shp (712 kW). It had a standard Predator airframe, except that the wings were stretched from 48 feet (14.6 m) to 66 feet (20 m). The B-001 had a speed of 220 kts (390 km/h) and could carry a payload of 750 pounds (340 kilograms) to an altitude of 50,000 feet (15.2 kilometers) with an endurance of 30 hours.[8]

GA refined the design, taking it in two separate directions. The first was with a jet-powered version. The "Predator B-002" was fitted with a Williams FJ44-2A turbofan engine with 10.2 kN (2,300 lbf, 1,040 kgf) thrust. It had payload capacity of 475 pounds (215 kilograms), a ceiling of 60,000 feet (18.3 kilometers) and endurance of 12 hours. The U.S. Air Force has ordered two airframes for evaluation, delivered in 2007.[9]

The second was the "Predator B-003", referred to by GA as the "Altair", which has a new airframe with an 84-feet (25.6 m) wingspan and a takeoff weight of about 7,000 pounds (3,175 kilograms). Like the Predator B-001, it is powered by a TP-331-10T turboprop. This variant has a payload capacity of 3,000 pounds (1,360 kilograms), a maximum ceiling of 52,000 feet (15.8 kilometers), and an endurance of 36 hours.[10][11]

Air Force version
First MQ-9 arrives at Creech AFB, March 2007.

In October 2001, the US Air Force signed a contract with GA to purchase an initial pair of Predator B-003s for evaluation, with follow-up orders for production machines. The first test MQ-9s were delivered to the Air Force in 2002. The name "Altair" did not follow the aircraft into testing, with the Air Force continuing to refer to the system as "Predator B" until it was renamed Reaper ("Altair" instead became the designation for the unarmed NASA version); this is confusing, however, as the manufacturer uses the term to refer to the smaller B-001 prototype.[8]

Operators, stationed at bases such as Creech Air Force Base, near Las Vegas, can hunt for targets and observe terrain using a number of sensors, including a thermal camera. One estimate has the on-board camera able to read a license plate from two miles away.[12] An operator's command takes 1.2 seconds to reach the drone via a satellite link. The MQ-9 is fitted with six stores pylons. The inner stores pylons can carry a maximum of 1,500 pounds (680 kilograms) each and allow carriage of external fuel tanks. The mid-wing stores pylons can carry a maximum of 600 pounds (270 kilograms) each, while the outer stores pylons can carry a maximum of 200 pounds (90 kilograms) each. An MQ-9 with two 1,000 pound (450 kilogram) external fuel tanks and a thousand pounds of munitions has an endurance of 42 hours.[11] The Reaper has an endurance of 14 hours when fully loaded with munitions.[4] The MQ-9 carries a variety of weapons including the GBU-12 Paveway II laser-guided bomb, the AGM-114 Hellfire II air-to-ground missiles, the AIM-9 Sidewinder.[13] and recently, the GBU-38 JDAM (Joint Direct Attack Munition). Tests are underway to allow for the addition of the AIM-92 Stinger air-to-air missile . Air Force believes that the Predator B will give the service an improved "deadly persistence" capability, with the UAV flying over a combat area night and day waiting for a target to present itself. In this role an armed UAV neatly complements piloted strike aircraft. A piloted strike aircraft can be used to drop larger quantities of ordnance on a target while a cheaper UAV can be kept in operation almost continuously, with ground controllers working in shifts, carrying a lighter ordnance load to destroy targets.[11]

By October, 2007 the U.S. Air Force owned nine Reapers,[14] and was expected to decide whether to order full-rate production in 2009.[4] On 18 May 2006, the Federal Aviation Administration (FAA) issued a certificate of authorization that allows the MQ-1 and MQ-9 aircraft to fly in U.S. civilian airspace to search for survivors of disasters. Requests had been made in 2005 for the aircraft to be used in search and rescue operations following Hurricane Katrina but, because there was no FAA authorization in place at the time, the planes were not used.[15]

In September 2007, the MQ-9 deployed into Iraq at Balad, the largest U.S. air base in Iraq.[16] On 28 October 2007 the Air Force Times reported an MQ-9 had achieved its first "kill", firing a Hellfire missile against "Afghanistan insurgents in the Deh Rawood region of the mountainous Oruzgan province. The strike was 'successful'," the United States Central Command Air Forces said.[17]

Critics have stated that the USAF's insistence on qualified pilots flying UAVs is a bottleneck to expanding their deployment. Air Force Major General William Rew stated on 5 August 2008, "For the way we fly them right now"—fully integrated into air operations and often flying missions alongside manned aircraft—"we want pilots to fly them."[18] This may be exacerbating losses of Air Force aircraft, in comparison with US Army operations.[19]
An MQ-9 taking off in Afghanistan

The typical MQ-9 system consists of multiple aircraft, ground control station, communications equipment and links, maintenance spares, and military (or contractor) personnel. The crew consists of a pilot and sensor operator. To meet combat requirements, the MQ-9 tailors its capabilities using mission kits of various combinations of weapons and sensors payloads. The Raytheon AN/AAS-52 multi-spectral targeting sensor suite includes a color/monochrome daylight TV, infrared, and image-intensified TV with laser rangefinder/target designator to designate targets for laser guided munitions. The Synthetic Aperture Radar system enables GBU-38 JDAM targeting, is capable of very fine resolution in both spotlight and strip modes, and has ground moving target indicator capability.

[edit] Navy version

General Atomics designed a naval version of the Reaper, named the "Mariner", for the U.S. Navy's Broad Area Maritime Surveillance (BAMS) program requirements. The design would have an increased fuel capacity in order to have an endurance of up to 49 hours.[20] Proposed variations on the ultimate design included one designed for carrier operations with folding wings for carrier storage, shorter and more rugged landing gear, an arresting hook, cut-down or eliminated ventral flight surfaces and six stores pylons with a total load of 3,000 pounds (1,360 kilograms).[11] The Northrop Grumman RQ-4N was announced the BAMS winner.

The US Customs and Border Protection has ordered a "Maritime Variant" of the MQ-9.[21]

[edit] NASA version
NASA version Altair
NASA version Ikhana

NASA had initially expressed some interest in a production version of the B-002 turbofan-powered variant,[11] but instead has leased an unarmed version of the Reaper, which carries the GA-ASI company name "Altair". Altair is one of the first 3 "Predator-B" airframes. The other 2 airframes, known as "Predator-B 001" and "Predator-B 002", had a maximum gross weight of 7,500 pounds. Altair differs from these models in that it has an 86-foot (26 m) long wingspan (20 feet greater than early and current MQ-9's). The Altair has enhanced avionics systems to better enable it to fly in FAA-controlled civil airspace and demonstrate "over-the-horizon" command and control capability from a ground station. These aircraft are used by NASA's Earth Science Enterprise as part of the NASA ERAST Program to perform on-location science missions.[22]

In November 2006, NASA's Dryden Flight Research Center obtained an MQ-9 from General Atomics Aeronautical Systems Inc.. The aircraft has been named Ikhana and its main goal is the Suborbital Science Program within the Science Mission Directorate. NASA also acquired a ground control station in a mobile trailer.[23] This aircraft was used extensively to survey the Southern California wildfires in 2007. The data was used to deploy firefighters to areas of the highest need.

Homeland Security version
An MQ-9 of the U.S. Customs and Border Protection agency.
UAV Operators at Balad Camp Anaconda, Iraq, April 20, 2005.

The United States Department of Homeland Security initially ordered one Predator B for border patrol duty, referred to as MQ-9 CBP-101. It began operations 4 October 2005, but on 25 April 2006, this aircraft crashed in the Arizona desert. The NTSB determined (Record Identification: CHI06MA121[24]) that the cause of the crash was most likely a pilot error by the aircraft's ground-based pilot in the use of a checklist. During its operational period, the aircraft flew 959 hours on patrol and had a part in 2,309 arrests. It also contributed to the seizure of four vehicles and 8,267 pounds of marijuana.[25] Because of these successes, a second Predator B, called "CBP-104" (initially referred to as "CBP-102"), was delivered in September 2006, and commenced limited border protection operations on 18 October 2006. The program was further expanded on 16 February 2009, including Canadian border patrols where US officials were concerned about the explotation of the border by "drug smugglers, migrants and terrorists"[26].

The CBP-101 was equipped with the Lynx SAR, AX-15 payload, ARC-210 radios, and other sensors and communications equipment; CBP-104 was enhanced with Ku band satellite command and control link and MTS-A EO/IR sensors.[25]

The President’s FY 2006 Emergency Supplemental budget request added $45 million for the Predator B program, and the FY 2007 Homeland Security Appropriations bill adds an additional $20 million. In October 2006, GA-ASI announced a $33.9 million contract to supply two more Predator B systems by Fall 2007.[27]

U.S. Customs and Border Protection has Six [28]operational MQ-9s. One based in North Dakota, at the UAS Operations Center in Grand Forks, four in Arizona, at the UAS Operations Center in Sierra Vista and one based at Fort Drum, N.Y.[3] The aircraft are equipped with GA-ASI's Lynx Synthetic Aperture Radar (Lynx SAR info/web page) and Raytheon's MTS-B ElectroOptical/Infrared sensors.[29]

[edit] International versions


In September 2006, the General Atomics Mariner demonstrator aircraft was operated by the Australian Defence Science and Technology Organisation (DSTO) in an exercise designed to evaluate the aircraft's ability to aid in efforts to stem illegal fishing, drug running and illegal immigration. The Mariner operated from RAAF bases Edinburgh, South Australia and Learmonth, Western Australia in conjunction with a Royal Australian Navy Armidale class patrol boat, the Joint Offshore Protection Command and the Pilbara Regiment.[30]

United Kingdom

On 27 September 2006, the U.S. Congress was notified by the Defense Security Cooperation Agency that the United Kingdom was seeking to purchase a pair of MQ-9 Reapers. They are operated by No. 39 Squadron RAF out of Creech Air Force Base, Nevada.[31] A third MQ-9 is in the process of being purchased by the RAF.[31]

On 9 November 2007, the UK Ministry of Defence announced that its MQ-9 Reapers had begun operations in Afghanistan against the Taliban.[32] On 4 January 2008 it became public that the United Kingdom wants to purchase a further 10 MQ-9 Reapers, giving the Royal Air Force a total fleet of 13 Reaper UAVs.[33]

In April 2008, British special forces were forced to destroy one of the two Reapers operating in Afghanistan to prevent sensitive material falling into the hands of the Taliban after it crash landed.[34]

[edit] Germany

Germany has made a request to purchase five Reapers and four ground control stations, plus related support material and training. The request, being made through the Foreign Military Sales process, was presented to Congress through the Defense Security Cooperation Agency on 1 August 2008 and is valued at US$205 million.[35][36]


On August 1, 2008, Italy submitted a FMS request through the Defense Security Cooperation Agency for four aircraft, four ground stations and five years of maintenance support, all valued at US$330 million.[35][37]

Operational history
This article may contain an inappropriate mixture of prose and timeline. Please help convert this timeline into prose or, if necessary, a list.

* The California Office of Emergency Services requested NASA support for the Esperanza Fire, and in under 24 hours the General Atomics Altair (NASA variant of the Predator B) was launched on a 16 hour mission to map the perimeter of the fire. The Altair had just returned from a test mission a day before the Esperanza Fire started. The fire mapping research is a joint project with NASA and the US Forest Service.[38][39]
* On 25 April 2006, an MQ-9 operated by U.S. Customs and Border Protection crashed near Nogales, Arizona. The pilot, remotely operating the vehicle from Sierra Vista Municipal Airport, reported a momentary lockup of the displays on the primary control console. The pilot switched control to a secondary console, and in doing so inadvertently shut down the vehicle's engine, causing it to descend out of reach of communications and ultimately crash.[24][40]
* On 1 May 2007, the 432d Wing of the United States Air Force was activated to operate MQ-9 Reaper as well as MQ-1 Predator UAVs at Creech Air Force Base, Nevada. The pilots first flew combat missions in Iraq and Afghanistan in the summer of 2007.[41]

* As of October 2007 the USAF is flying operational missions in Afghanistan.[14] As of 6 March 2008, according to USAF Lieutenant General Gary North, the Reaper has attacked 16 targets in Afghanistan using 500-lb bombs and Hellfire missiles. On 4 February 2008 the Reaper dropped a bomb on a truck carrying an insurgent mortar and team near Kandahar.[42]

* On July 17, 2008, the Air Force began flying Reaper missions within Iraq from Balad Air Base.[43][44]

* It was reported on August 11, 2008 that the 174th Fighter Wing of the USAF will consist entirely of Reapers.[45]

* By March 2009 the Air Force had 28 operational Reapers.[2]


* Aeronautica Militare[46]


* Turkish Air Force (Turkey initially ordered 4 aircraft and 3 command centers)[47]

United Kingdom

* Royal Air Force
o No. 39 Squadron RAF[48]

United States

* United States Air Force
o Air Combat Command
+ 432d Air Expeditionary Wing - Creech Air Force Base, Nevada
# 30th Reconnaissance Squadron - Tonopah Test Range Airport
# 19th Attack Squadron
# 42d Attack Squadron
o Air Force Materiel Command
# 556th Test and Evaluation Squadron - Creech Air Force Base, Nevada
o Air Force Special Operations Command
+ 1st Special Operations Wing
# 3d Special Operations Squadron - Creech Air Force Base, Nevada
o Air National Guard
+ 174th Fighter Wing - Hancock Field, New York
* U.S. Customs and Border Protection
o Sierra Vista, Arizona
o Grand Forks, North Dakota


Several minor variations of the RQ-9/MQ-9 exist; these values are indicative.


* Contractor: General Atomics Aeronautical Systems Incorporated
* Crew(remote): 2 (Pilot plus a sensor operator)[49]
* Landing Type: runway
* Launch Type: runway
* Power Plant: Honeywell TP331-10T turboprop engine, 950 SHP (712 kW)
* Fuel Capacity: 1815 kg (4,000 lb)
* Length: 10.9728 m (36 ft)
* Wingspan: 20.1168 m (66 ft)
* Height: 3.8 m (12.5 ft)
* Empty weight: 2223 kg (4,900 lb)
* Max takeoff weight: 4760 kg (10,500 lb)[50]


* Service ceiling: 15 km (50,000 ft)
* Operational altitude: 7.5 km (25,000 ft) [51]
* Endurance: 14–28 hours (14 hours fully loaded) [52]
* Range: 5,926 km (3,200 nmi, 3,682 mi)
* Payload: 3,800 lb (1,700 kg)
o Internal: 800 lb (360 kg)
o External: 3,000 lb (1,400 kg)
* Maximum speed: 482 km/h (300 mph, 260 knots)
* Cruise speed: 276-313 km/h (172-195 mph, 150-170 knots) [53]


* AN/APY-8 Lynx II radar[54]
* AN/DAS-1 MTS-B Multi-Spectral Targeting System [55]


* 6 Hardpoints
o 1,500 lb (680 kg) on the two inboard weapons stations
o 500–600 lb (230–270 kg) on the two middle stations
o 150–200 lb (68–91 kg) on the outboard stations

* Up to 14x AGM-114 Hellfire air to ground missiles can be carried or four Hellfire missiles and two 500 lb (230 kg) GBU-12 Paveway II laser-guided bombs. The 500 lb (230 kg) GBU-38 Joint Direct Attack Munition (JDAM) can also be carried. Testing is underway to support the operation of the AIM-92 Stinger air-to-air missile.
Add a Comment:
No comments have been added yet.

So I created this party logo for a generic Menshevik political party. I believe I created it for the Russian Mensheviks given that I used the Russia's flag colors around the rim of the logo.

So the base is the coat of arms for Udmurtia (look it up :) ), I edited its colors and added the first as well as changed and added the stars.

Hopefully I've covered my bases and you enjoy :)
Add a Comment:
No comments have been added yet.

I just wanted to try my hand at a Unified Korea flag using themes from the nations past.
Add a Comment:
No comments have been added yet.

The Messerschmitt Me 262 Schwalbe ("Swallow") was the world's first operational jet-powered fighter aircraft.[4] It was produced in World War II and saw action starting in 1944 as a multi-role fighter/bomber/reconnaissance/interceptor warplane for the Luftwaffe. Allied pilots referred to it as the "Blow Job".[5] The Me 262 had a negligible impact on the course of the war due to its late introduction, with 509 claimed Allied kills[6] (although higher claims are sometimes made[Notes 1]) against the loss of about 100 Me 262s.

Design and development
Hans Guido Mutke's Me 262A on display at the Deutsches Museum

The Me 262 was already being developed as Projekt P.1065 before the start of World War II. Plans were first drawn up in April 1939, and the original design was very similar to the plane that eventually entered service. The progression of the original design into service was delayed greatly by technical issues involving the new jet engines. Funding for the jet program was also initially lacking, as many high-ranking officials thought the war could easily be won with conventional aircraft. Among those was Hermann Göring, head of the Luftwaffe, who cut back the engine development program to just 35 engineers in February 1940; Willy Messerschmitt, who desired to maintain mass production of the Bf 109 and the projected Me 209; and Major General Adolf Galland, who supported Messerschmitt through the early development years, until flying the Me 262 himself on 22 April 1943. By that time, problems with engine development had slowed production of the aircraft considerably.[8]

In mid-1943, Adolf Hitler envisioned the Me 262 not as a defensive interceptor, but as an offensive ground-attack/bomber, almost as a very high speed, light payload Schnellbomber ("Fast Bomber"), to penetrate Allied air superiority during the expected invasion of France. His edict resulted in the development of (and concentration on) the Sturmvogel variant. It is debatable to what extent Hitler's interference extended the delay in bringing the Schwalbe into operation.[9][10] Albert Speer, then Minister of Armaments and War Production, claims in his memoirs, that Hitler originally blocked mass production of the Me 262, before agreeing to their production in early 1944. However he rejected arguments that the plane would be more effective as a fighter against Allied bombers which were then destroying large parts of Germany and wanted it as a bomber with which to use for revenge attacks. According to Speer, Hitler had felt that its superior speed compared to other fighters of the era meant that it couldn't be attacked. Based on such reasoning, Hitler had preferred it for high altitude straight flying and hence his initial preference for it to be a long range bomber. [11]

Although it is often stated the Me 262 is a "swept wing" design, the production Me 262 had a leading edge sweep of only 18.5°. This was done primarily to properly position the center of lift relative to the centre of mass and not for the aerodynamic benefit of increasing the critical Mach number of the wing. The sweep was too slight to achieve any significant advantage.[12] This happened after the initial design of the aircraft, when the engines proved to be heavier than originally expected. On 1 March 1940, instead of moving the wing forward on its mount, the outer wing was positioned slightly backwards to the same end. The trailing edge of the middle section of the wing remained unswept.[13]. Based on data from the AVA Göttingen and windtunnel results, the middle section's leading edge was later swept to the same angle as the outer panels.[14]

The first test flights began on 18 April 1941, with the Me 262 V1 example, bearing its Stammkennzeichen radio code letters of PC+UA, but since its intended BMW 003 turbojets were not ready for fitting, a conventional Junkers Jumo 210 engine was mounted in the V1 prototype's nose, driving a propeller, to test the Me 262 V1 airframe. When the BMW 003 engines were finally installed, the Jumo was retained for safety, which proved wise as both 003s failed during the first flight and the pilot had to land using the nose mounted engine alone.[1]
Messerschmitt Me 262 Schwalbe

The V3 third prototype airframe, with the code PC+UC, became a true "jet" when it flew on 18 July 1942 in Leipheim near Günzburg, Germany, piloted by Fritz Wendel. This was almost nine months ahead of the British Gloster Meteor's first flight on 5 March 1943. The conventional gear, forcing a tail-down attitude on the ground, of the Me 262 V3 caused its jet exhaust to deflect off the runway, with the wing's turbulence negating the effects of the elevators in the tail-down attitude, and the first attempt was cut short. On the second attempt, Wendel solved the problem by tapping the aircraft's brakes at takeoff speed, lifting the horizontal tail above and out of the wing's turbulence.[15]

The aircraft was originally designed with a tailwheel undercarriage and the first four prototypes (Me 262 V1-V4) were built with this configuration, but it was discovered on an early test run that the engines and wings "blanked" the stabilizers, giving almost no control on the ground, as well as serious runway surface damage from the hot jet exhaust. Changing to a tricycle undercarriage arrangement, initially a fixed undercarriage on the "V5" fifth prototype, then fully retractable on the sixth (V6, with Stammkennzeichen code VI+AA) and succeeding aircraft, corrected this problem.

The BMW 003 jet engines, which were proving unreliable, were replaced by the newly available Junkers Jumo 004. Test flights continued over the next year, but the engines continued to be unreliable. Airframe modifications were complete by 1942, but hampered by the lack of engines, serial production did not begin until 1944. This delay in engine availability was in part due to the shortage of strategic materials, especially metals and alloys able to handle the extreme temperatures produced by the jet engine. Even when the engines were completed, they had an expected operational lifetime of approximately 50 continuous flight hours; in fact, most 004s lasted just 12 hours, even with adequate maintenance. A pilot familiar with the Me 262 and its engines could expect approximately 20–25 hours of life from the 004s. Changing a 004 engine was intended to require three hours, but this typically took eight to nine due to poorly made parts and inadequate training of ground crews.

Turbojet engines have less thrust at low speed than propellers, and as a result, low-speed acceleration is relatively poor. It was more noticeable for the Me 262 as early jet engines (before the invention of afterburners) responded slowly to throttle changes. The introduction of a primitive autothrottle late in the war only helped slightly. Conversely, the higher power of jet engines at higher speeds meant the Me 262 enjoyed a much higher rate of climb. Used tactically, this gave the jet fighter an even greater speed advantage in climb rate than level flight at top speed.

With one engine out, the Me 262 still flew well, with speeds of 450-500 km/h (280-310 mph), but pilots were warned never to fly slower than 300 km/h (190 mph) on one engine, as the asymmetrical thrust would cause serious problems.

Operationally, the Me 262 had an endurance of 60 to 90 minutes.

[edit] Operational history
Me 262 A-1a

In April 1944, Erprobungskommando 262 was formed at Lechfeld in Bavaria as a test unit (Jäger Erprobungskommando Thierfelder)[3] to introduce the 262 into service and train a core of pilots to fly it. On 26 July 1944, Leutnant Alfred Schreiber with the 262 A-1a W.Nr. 130 017 damaged a Mosquito reconnaissance aircraft of No. 540 Squadron RAF PR Squadron, which was allegedly lost in a crash landing upon landing at an air base in Italy.[16] Other sources state the aircraft was damaged during evasive manoeuvres and escaped.[17] It was the first victory for a turbojet fighter aircraft in aviation history.[18] Major Walter Nowotny was assigned as commander after the death of Werner Thierfelder in July 1944, and the unit redesignated Kommando Nowotny. Essentially a trials and development unit, it holds the distinction of having mounted the world's first jet fighter operations. Trials continued slowly, with initial operational missions against the Allies in August 1944 allegedly downing 19 Allied aircraft for six Me 262s lost, although these claims have never been verified by cross-checking with USAAF records. The RAF Museum holds no intelligence reports of RAF aircraft engaging in combat with Me 262s in August, although there is a report of an unarmed encounter between an Me 262 and a Mosquito.[19] Despite orders to stay grounded, Nowotny chose to fly a mission against an enemy formation. After an engine failure, he was shot down and killed on 8 November 1944 by First Lieutenant Edward "Buddy" Haydon of the 357th Fighter Group, USAAF and Captain Ernest "Feeb" Fiebelkorn of the 20th Fighter Group, USAAF.[citation needed] The Kommando was then withdrawn for further training and a revision of combat tactics to optimise the 262's strengths.
Me 262 A, circa 1944/45

By January 1945, Jagdgeschwader 7 (JG 7) had been formed as a pure jet fighter unit, although it would be several weeks before it was operational. In the meantime, a bomber unit — I Gruppe, Kampfgeschwader 54 (KG 54) — had re-equipped with the Me 262 A-2a fighter-bomber for use in a ground-attack role. However, the unit lost 12 jets in action in two weeks for minimal returns.

Jagdverband 44 (JV 44) was another Me 262 fighter unit formed in February, by Lieutenant General Adolf Galland, who had recently been dismissed as Inspector of Fighters. Galland was able to draw into the unit many of the most experienced and decorated Luftwaffe fighter pilots from other units grounded by lack of fuel.

During March, Me 262 fighter units were able, for the first time, to mount large scale attacks on Allied bomber formations. On 18 March 1945, 37 Me 262s of JG 7 intercepted a force of 1,221 bombers and 632 escorting fighters. They shot down 12 bombers and one fighter for the loss of three Me 262s. Although a 4:1 ratio was exactly what the Luftwaffe would have needed to make an impact on the war, the absolute scale of their success was minor, as it represented only one per cent of the attacking force. In 1943 and early 1944, the USAAF had been able to keep up offensive operations despite loss ratios of 5% and more, and the few available Me 262s could not inflict sufficient losses to hamper their operations.
Side view of a Me 262 night fighter, note the radar antenna on the nose and second seat for a radar operator.

Several two-seat trainer variants of the Me 262, the Me 262 B-1a, had been adapted as night fighters, complete with on-board FuG 218 Neptun radar and Hirschgeweih ("stag's antlers") antenna, as the B-1a/U1 version. Serving with 10 Staffel, Nachtjagdgeschwader 11, near Berlin, these few aircraft (alongside several single-seat examples) accounted for most of the 13 Mosquitoes lost over Berlin in the first three months of 1945. However, actual intercepts were generally or entirely made using Wilde Sau methods, rather than AI radar-controlled interception. As the two-seat trainer was largely unavailable, many pilots had to make their first flight in a jet in a single-seater without an instructor.

Despite its deficiencies, the Me 262 clearly signaled the beginning of the end of piston-engined aircraft as effective fighting machines. Once airborne, it could accelerate to speeds well over 800 km/h (500 mph), over 150 km/h (90 mph) faster than any Allied fighter operational in the European Theater of Operations.

The Me 262's top ace[Notes 2] was probably Hauptmann Franz Schall with 17 kills which included six four-engine bombers and ten P-51 Mustang fighters, although night fighter ace Oberleutnant Kurt Welter claimed 25 Mosquitos and two four-engine bombers shot down by night and two further Mosquitos by day flying the Me 262. Most of Welter's claimed night kills were achieved in standard radar-less aircraft, even though Welter had tested a prototype Me 262 fitted with FuG 218 Neptun radar. Another candidate for top ace on the aircraft was Oberstleutnant Heinrich Bär, who claimed 16 enemy aircraft while flying the Me 262.

[edit] Anti-bomber tactics

The standard approach against bomber formations, which were travelling at cruise speed, called for the Me 262 to approach the bombers from the rear at a higher altitude, diving in below the bomber's flight level to get additional speed before gaining altitude again and, on reaching the bomber's level, opening fire with its four 30 mm cannon at 600 m (656 yd) range.

Allied bomber gunners found that their electric gun turrets had problems tracking the jets. Target acquisition was difficult because the jets closed into firing range quickly and had to remain in firing position only briefly using their standard attack profile.

Eventually, new combat tactics were developed to counter the Allied bombers' defences. Me 262s equipped with R4M rockets would approach from the side of a bomber formation, where their silhouettes were widest, and while still out of range of the 12.7 mm (.50 in) guns, fire a salvo of these explosive rockets. The explosive power of only one or two of these rockets was capable of downing even the famously rugged B-17; a strike on an enemy aircraft meant its total annihilation.[20] Although this tactic was effective, it came too late to have a real effect on the war. This method of attacking bombers became the standard until the invention and mass deployment of guided missiles. Some nicknamed this tactic the "Luftwaffe's Wolf Pack", as the fighters would often make runs in groups of two or three, fire their rockets, then return to base.

On 1 September 1944, USAAF General Carl Spaatz expressed the fear that if greater numbers of German jets appeared, they could inflict losses heavy enough to force cancellation of the Allied daylight bombing offensive.

[edit] Counter-jet tactics

Tactics against the Me 262 developed quickly despite its great speed advantage. Allied escort fighters would fly high above the bombers — diving from this height gave them extra speed, thus reducing the speed difference. The Me 262 was less maneuverable than the Mustang and trained Allied pilots could catch up to a turning Me 262, though the only reliable way of dealing with the jets, as with the even faster Me 163 Komet rocket fighters, was to attack them on the ground and during take off and landing. Luftwaffe airfields that were identified as jet bases were frequently bombed by medium bombers, and Allied fighters patrolled over the fields to attack jets trying to land. The Luftwaffe countered by installing flak alleys along the approach lines in order to protect the Me 262s from the ground and providing top cover with conventional fighters during takeoff and landing. Nevertheless, in March-April 1945, Allied fighter patrol patterns over Me 262 airfields resulted in numerous losses of jets and serious attrition of the force.

Another experimental tactic was installing nitrous oxide injection, much like the Germans' own GM-1 system, into Mustangs. When chasing an Me 262, the pilot could press a button injecting nitrous oxide into the engine, producing a quick burst of speed.

Other Allied fighters that encountered the Me 262 included the British Supermarine Spitfire, Hawker Tempest and the Soviet Lavochkin La-7. The first recorded Allied destruction of a Me 262, belonging to the unit known as Kommando Schenk, was on 28 August 1944, claimed as destroyed by 78th FG pilots Major Joseph Myers and Second Lieutenant Manford O. Croy flying P-47 Thunderbolts. Oberfeldwebel Hieronymus "Ronny" Lauer of I KG(J) 51, on a landing pattern crash landed his 262 to get away from the Allied fighters, which then destroyed the Me 262 in strafing attacks.[21][22] The first Me 262 , belonging to 3. Staffel/Kampfgeschwader 51, with unit code letters "9K+BL", was shot down in combat on 5 October 1944 by Spitfire IXs of 401 RCAF. The 262 pilot was H.C. Butmann in WNr 170093 of 3./KG51. The Lavochkin was the only Soviet fighter to shoot down a German jet, with La-7 ace Ivan Nikitovich Kozhedub, downing an Me 262 on 15 February 1945 over eastern Germany.

[edit] High speed research
Me 262 interior

Willy Messerschmitt regarded the Me 262 as only an interim type when it went into production.

Swept wings had been proposed as early as 1935 by Adolf Busemann, and Messerschmitt had researched the topic from 1940. In April 1941, he proposed fitting a 35° swept wing (Pfeilflügel II, literally "arrow wing II") to the Me 262,[23] the same wing sweep angle that would later be used on both the American F-86 Sabre and Soviet MiG-15 fighter jets. Though this was not implemented, he continued with the projected HG II and HG III (Hochgeschwindigkeit, "high speed") derivatives in 1944, which were designed with a 35° and 45° wing sweep, respectively.[24]

Interest in high-speed flight, which led him to initiate work on swept wings starting in 1940, is evident from the advanced developments Messerschmitt had on his drawing board in 1944. While the Me 262 HG I actually flight tested in 1944 had only small changes compared to combat aircraft, most notably a low-profile canopy (tried as the Rennkabine (literally "racing cabin") on the Me 262 V9 prototype for a short time) to reduce drag, the HG II and HG III designs were far more radical. The projected HG II combined the low-drag canopy with a 35° wing sweep and a butterfly tail. The HG III had a conventional tail, but a 45° wing sweep and turbines embedded in the wing roots.[25]

Messerschmitt also conducted a series of flight tests with the series production Me 262. In dive tests, it was determined that the Me 262 went out of control in a dive at Mach 0.86, and that higher Mach numbers would lead to a nose-down trim that could not be countered by the pilot. The resulting steepening of the dive would lead to even higher speeds and disintegration of the airframe due to excessive negative g loads.

The HG series of Me 262 derivatives was estimated to be capable of reaching transonic Mach numbers in level flight, with the top speed of the HG III being projected as Mach 0.96 at 6,000 m (19,690 ft) altitude. Despite the necessity to gain experience in high-speed flight for the HG II and III designs, Messerschmitt undertook no attempts to exceed the Mach 0.86 limit for the Me 262.

After the war, the Royal Aircraft Establishment, at that time one of the leading institutions in high-speed research, re-tested the Me 262 to help with British attempts at exceeding Mach 1. The RAE achieved speeds of up to Mach 0.84 and confirmed the results from the Messerschmitt dive tests. Similar tests were run by the Soviets. No attempts were made to exceed the Mach limit established by Messerschmitt.

After Willy Messerschmitt's death, the former Me 262 pilot Hans Guido Mutke claimed to be the first person to exceed Mach 1, on 9 April 1945 in a Me 262 in a "straight-down" 90° dive. This claim is disputed because it is only based on Mutke's memory of the incident, which recalls effects other Me 262 pilots observed below the speed of sound at high indicated airspeed, but with no altitude reading required to determine the actual speed. Furthermore, the pitot tube used to measure airspeed in aircraft can give falsely elevated readings as the pressure builds up inside the tube at high speeds. Finally, the Me 262 wing had only a slight sweep incorporated for trim (center of gravity) reasons and likely would have suffered structural failure due to divergence at high transonic speeds. One airframe (Me 262 HG1 V9, Werknummer 130 004, with Stammkennzeichen of VI+AD) [26]) was prepared with the low-profile Rennkabine racing canopy and may have achieved an unofficial record speed of 975 km/h (606 mph), altitude unspecified.[27]

[edit] Production
Underground manufacture of Me 262s

While Germany was bombed intensively, production of the Me 262 was dispersed into low-profile production facilities, sometimes little more than clearings in the forests of Germany and occupied nations. Through the end of February to the end of March 1945, approximately 60 Me 262s were destroyed in attacks on Obertraubling and 30 at Leipheim[28] (the Neuberg jet plant was bombed on 19 March.)[29] Large, heavily protected underground factories were constructed to take up production of the Me 262, safe from bomb attacks, but the war ended before they could be completed. At B8 Bergkristall-Esche II at St. Georgen/Gusen, Austria, forced labourers of Concentration Camp Gusen II produced fully equipped fuselages for the Me 262 at a monthly rate of 450 units on large assembly lines from early 1945.[30] Wings for the Me 262 were produced in Germany's oldest motorway tunnel at Engelberg to the west of Stuttgart. In the end, slightly over 1,400 Me 262s of all versions were produced. As few as 200 Me 262s made it to combat units due to fuel shortages, pilot shortages, and the lack of airfields that could support the Me 262.[citation needed]

[edit] Postwar history and flyable reproductions
Reproduction of a Messerschmitt Me 262 at the Berlin Air Show 2006

After the end of the war, the Me 262 and other advanced German technologies were quickly swept up by the Americans (as part of the USAAF's Operation Lusty), British, and Soviets. Many Me 262s were found in readily-repairable condition and were confiscated.

During testing, the Me 262 was found to have advantages over the early models of the Gloster Meteor. It was faster, had better cockpit visibility to the sides and rear (mostly due to the canopy frame and the discoloration caused by the plastics used in the Meteor's construction), and was a superior gun platform, as the early Meteors had a tendency to snake at high speed and exhibited "weak" aileron response.[31] The Me 262 did have a shorter combat range than the Meteor.

The USAAF compared the P-80 Shooting Star and Me 262 concluding, "Despite a difference in gross weight of nearly 907 kg (2,000 lb), the Me 262 was superior to the P-80 in acceleration, speed and approximately the same in climb performance. The Me 262 apparently has a higher critical Mach number, from a drag standpoint, than any current Army Air Force fighter."[32] The Army Air Force also tested an example of the Me 262A-1a/U3 (US flight evaluation serial FE-4012), an unarmed photoreconnaissance version, which was fitted with a fighter nose and given an overall smooth finish. It was used for performance comparisons against the P-80. During testing between May and August 1946, the aircraft completed eight flights, lasting four hours and 40 minutes. Testing was discontinued after four engine changes were required during the course of the tests, culminating in two single-engine landings.[33]

These aircraft were extensively studied, aiding development of early U.S. and Soviet jet fighters. The F-86 Sabre, designed by the engineer Edgar Schmued, used the Me 262 airfoil (Messerschmitt Wing A) and a slat design similar to that of the Me 262.[34]

The Czechoslovak aircraft industry continued to produce single-seater (designated Avia S-92) and two-seater (designated Avia CS-92) variants of the Me 262 after World War II. From August 1946, a total of nine single-seater S-92 and three two-seater CS-92 planes were completed and test flown. They were introduced in 1947 and in 1950 they were supplied to the 5th Fighter Squadron. These were kept flying as late as 1957. They were the first jet fighters to serve in the Czechoslovak Air Force. Both versions are on display at the Prague Aero museum in Kbely.

In January 2003, the American Me 262 Project completed flight testing to allow for delivery of near-exact reproductions of several versions of the Me 262 including at least two B-1c two-seater variants, one A-1c single seater and two "convertibles" that could be switched between the A-1c and B-1c configurations. All are powered by General Electric J85 engines and feature additional safety features, such as upgraded brakes and strengthened landing gear. The "c" suffix refers to the new J-85 powerplant and has been informally assigned with the approval of the Messerschmitt Foundation in Germany (the Werk Number of the reproductions picked up where the last wartime produced Me-262 left off - a continuous airframe serial number run with a 50 year production break). Flight testing of the first newly manufactured Me 262 A-1c (single-seat) variant was completed in August 2005. The first of these machines went to a private owner in the southwestern United States, while the second was delivered to the Messerschmitt Foundation at Manching, Germany. This aircraft conducted a private test flight in late April 2006, and made its public debut in May at the ILA 2006. The new Me 262 flew during the public flight demonstrations.[35] Me 262 Werk Number 501241 was delivered to the Collings Foundation as White 1 of JG 7. This aircraft will be offering ride-along flights starting in 2008. [36]

[edit] Variants
Me 262 A-1a/U4, postwar image

Me 262 A-0
Pre-production aircraft fitted with two Jumo 004B turbojet engines, 23 built.
Me 262 A-1a "Schwalbe"
Production version, fighter and fighter/bomber.
Me 262 A-1a/R-1
Equipped with provisions for R4M air-to-air rockets
Me 262 A-1a/U1
Single prototype with a total of six nose mounted guns, two 20 mm MG 151/20 cannons, two 30 mm (1.18 in) MK 103 cannons, and two 30 mm (1.18 in) MK 108 cannons.
Me 262 A-1a/U2
Single prototype with FuG 220 Lichtenstein SN-2 90 MHz radar transceiver and Hirschgeweih antenna array, for trials as a night-fighter.
Me 262 A-1a/U3
Reconnaissance version modified in small numbers, with Reihenbilder RB 20/30 cameras mounted in the nose (sometimes one RB 20/20 and one RB 75/30). Some retained one 30 mm (1.18 in) cannon, but most were unarmed.
Me 262 A-1a/U4
Bomber destroyer version, two prototypes with an adapted 50 mm (2 in) MK 214 (or Bordkanone BK 5) anti-tank gun in nose.
Me 262 A-1a/U5
Heavy jet fighter with six 30 mm (1.18 in) MK 108s in the nose
Me 262 A-1b
As A-1a but powered with BMW 003 engines. Few were built, two are known to have existed at experimental establishments; maximum speed of 800 km/h (500 mph).
Me 262 A-2a "Sturmvogel"
Definitive bomber version retaining only the two lower 30 mm (1.18 in) MK 108s.
Me 262 A-2a/U1
Single prototype with advanced bombsight.
Me 262 A-2a/U2
Two prototypes with glazed nose for accommodating a bombardier.
Me 262 A-3a
Proposed ground-attack version.
Me 262 A-4a
Reconnaissance version.
Me 262 A-5a
Definitive reconnaissance version used in small numbers at end of the war.
Me 262 B-1a
Two-seat trainer.
Me 262 B-1a/U1
Me 262 B-1a trainers converted into provisional night fighters, FuG 218 Neptun radar[37]
Me 262 B-2
Proposed night fighter version with stretched fuselage.
Me 262 C-1a
Single prototype [made from Me 262A Werknummer 130 186] of rocket-boosted interceptor (Heimatschützer I) with Walter HWK 109-509 rocket in tail, first flown with combined jet/rocket power on 27 February 1945.[38]
Me 262 C-2b
Single prototype [made from Me 262A Werknummer 170 074] of rocket-boosted interceptor (Heimatschützer II) with two BMW 003R "combined" powerplants (BMW 003 jet, with one BMW 718 rocket engine mounted atop the rear of each jet exhaust) for boosted thrust, only flown once with combined jet/rocket power on 26 March 1945. Video of BMW 718 rocket engine test firing on this aircraft
Me 262 C-3a
Never-completed. possible Heimatschützer III prototype of rocket-boosted interceptor with Walter rocket motor in belly pack.[39]
Me 262 D-1
Proposed variant to carry Jagdfaust mortars.
Me 262 E-1
Proposed cannon-armed variant based on A-1a/U4.
Me 262 E-2
Proposed rocket-armed variant carrying up to 48 × R4M rockets.
Me 262 S
Zero-series model for Me 262 A-1a
Me 262 V
Test model for Me 262
Me 262 W
Provisional designation for Me262 with pulse-jet engines

[edit] Postwar variants
Avia S-92, the Czechoslovak-built Me 262A

Avia S-92 [40]
Czech-built Me 262 A-1a (fighter [41]
Avia CS-92
Czech-built Me 262 B-1a (fighter trainer, two seats)

[edit] Reproductions

These reproductions are constructed by Legend Flyers of Everett, Washington.[42] The Jumo-004 engines of the original are replaced by more reliable General Electric J85 engines. The first Me 262 reproduction (a two-seater) took off for the first time in December 2002 and the second one in August 2005. This one was delivered to the Messerschmitt Foundation and was presented at the ILA airshow in 2006.[43]

American privately built, based on A-1a configuration.
American privately built, based on B-1a configuration.
American privately built, convertible between A-1a and B-1a configuration.

[edit] Operators

* Luftwaffe
* Czechoslovak Air Force (Postwar, nine S-92 and three CS-92)

[edit] Survivors
Me 262B-1a/U1 (Red 8)
Me 262 B-1a (White 35)
Me 262A and its Junkers Jumo 004 turbojet engine (Yellow 5)

Me 262A, W.Nr.500071 "White 3", III./JG 7
Deutsches Museum[44], Munich, Germany. This aircraft, flown by Hans Guido Mutke while a pilot of 9. Staffel/JG 7, was confiscated by Swiss authorities on 25 April 1945 after Mutke made an emergency landing in Switzerland due to lack of fuel (80 litres were remaining, 35 litres were usually burnt in one minute).
Me 262 A-1a
Reconstructed from parts of crashed and incomplete Me 262s. Luftwaffenmuseum der Bundeswehr, Germany.
Me 262 A-1a W.Nr.501232 "Yellow 5", 3./KG(J)6
National Museum of the United States Air Force, Wright-Patterson Air Force Base, Dayton, Ohio, USA.
Me 262 A-1a/U3 W.Nr.500453
Flying Heritage Collection, Arlington, Washington, USA, scheduled to reopen in Everett, Washington in Summer 2008, currently under restoration in England.
Me 262 A-1a W.Nr.500491 "Yellow 7", II./JG 7
Smithsonian Institution, Washington, DC, USA.
Me 262 A-2a W.Nr.112372
RAF Museum Hendon, United Kingdom.
Me 262 A-2a W.Nr.500200 "Black X 9K+XK", II./KG 51
Australian War Memorial, Canberra, Australia.
Me 262 B-1a/U1, W.Nr.110305 "Red 8"
South African National Museum of Military History, Johannesburg, South Africa.
Me 262 B-1a, W.Nr.110639 "White 35"
NAS Willow Grove, Pennsylvania, USA.
Avia S-92
Aviation Museum Kbely, Prague, Czech Republic.
Avia CS-92
Aviation Museum Kbely, Prague, Czech Republic.

[edit] Popular culture

* The American hard rock band Blue Öyster Cult portrayed an Me 262 on the cover of their third album Secret Treaties (1974). The album also contains a song, Me 262, written from the point of view of a Luftwaffe pilot on a bomber interception mission in April 1945. [45]
* Clive Cussler's famous fictional character Dirk Pitt owns an Me 262, which he acquired when he helped excavate a hidden airfield that held a number of the aircraft.[46]
* In the PC flight-simulator Chuck Yeager's Air Combat, a virtual Chuck Yeager voiced by himself, accurately states that Allied pilots used the term Blow Job as a nickname for the Me 262s. [5]

[edit] Specifications (Messerschmitt Me 262 A-1a)
Orthographically projected diagram of the Messerschmitt Me 262.

Data from Quest for Performance[12] Original Messerschmitt documents[47]

General characteristics

* Crew: 1
* Length: 10.60 m (34 ft 9 in)
* Wingspan: 12.60 m (41 ft 6 in)
* Height: 3.50 m (11 ft 6 in)
* Wing area: 21.7 m² (234 ft²;)
* Empty weight: 4,404 kg (9,709 lb)
* Loaded weight: 7,130 kg (15,720 lb)
* Max takeoff weight: 6977 kg (15,381 lb)
* Powerplant: 2× Junkers Jumo 004 B-1 turbojets, 8.8 kN (1,980 lbf) each
* Aspect ratio: 7.32


* Maximum speed: 900 km/h (559 mph)
* Range: 1,050 km (652 mi)
* Service ceiling: 11,450 m (37,565 ft)
* Rate of climb: 1,200 m/min (3,900 ft/min)
* Thrust/weight: 0.28


* Guns: 4 × 30 mm MK 108 cannons (A-2a: two cannons)
* Rockets: 24 × 55 mm (2.2 in) R4M rockets
* Bombs: 2 × 250 kg (551 lb) bombs or 2 × 500 kg (1,102 lb) bombs (A-2a only
Add a Comment:
No comments have been added yet.